BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 24303366)

  • 1. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues.
    Kim M; Gillies RJ; Rejniak KA
    Front Oncol; 2013 Nov; 3():278. PubMed ID: 24303366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of Nanomedicine in Tumor Spheroid as an
    Roy SM; Garg V; Barman S; Ghosh C; Maity AR; Ghosh SK
    Front Bioeng Biotechnol; 2021; 9():785937. PubMed ID: 34926430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor - Computational approach.
    Moradi Kashkooli F; Soltani M; Rezaeian M; Taatizadeh E; Hamedi MH
    Microvasc Res; 2019 May; 123():111-124. PubMed ID: 30711547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug transport modeling in solid tumors: A computational exploration of spatial heterogeneity of biophysical properties.
    Salavati H; Pullens P; Ceelen W; Debbaut C
    Comput Biol Med; 2023 Sep; 163():107190. PubMed ID: 37392620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of mathematical models to understand anticancer drug delivery and its effect on solid tumors.
    Li C; Krishnan J; Stebbing J; Xu XY
    Pharmacogenomics; 2011 Sep; 12(9):1337-48. PubMed ID: 21919608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding Drug Resistance in Breast Cancer with Mathematical Oncology.
    Brocato T; Dogra P; Koay EJ; Day A; Chuang YL; Wang Z; Cristini V
    Curr Breast Cancer Rep; 2014 Jun; 6(2):110-120. PubMed ID: 24891927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of tumor tissue architecture in treatment penetration and efficacy: an integrative study.
    Rejniak KA; Estrella V; Chen T; Cohen AS; Lloyd MC; Morse DL
    Front Oncol; 2013; 3():111. PubMed ID: 23717812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in mathematical models of the active targeting of tumor cells by functional nanoparticles.
    Gao Y; Shi Y; Wang L; Kong S; Du J; Lin G; Feng Y
    Comput Methods Programs Biomed; 2020 Feb; 184():105106. PubMed ID: 31670178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropharmacology: An In Silico Approach for Assessing Drug Efficacy Within a Tumor Tissue.
    Karolak A; Rejniak KA
    Bull Math Biol; 2019 Sep; 81(9):3623-3641. PubMed ID: 29423880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy.
    Shamsi M; Sedaghatkish A; Dejam M; Saghafian M; Mohammadi M; Sanati-Nezhad A
    Drug Deliv; 2018 Nov; 25(1):846-861. PubMed ID: 29589479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current trends in mathematical modeling of tumor-microenvironment interactions: a survey of tools and applications.
    Rejniak KA; McCawley LJ
    Exp Biol Med (Maywood); 2010 Apr; 235(4):411-23. PubMed ID: 20407073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms.
    Siepmann J; Siepmann F; Florence AT
    Int J Pharm; 2006 May; 314(2):101-19. PubMed ID: 16647231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors.
    van de Ven AL; Wu M; Lowengrub J; McDougall SR; Chaplain MA; Cristini V; Ferrari M; Frieboes HB
    AIP Adv; 2012 Mar; 2(1):11208. PubMed ID: 22489278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical pathway modeling tools for drug target detection in cancer and other complex diseases.
    Marin-Sanguino A; Gupta SK; Voit EO; Vera J
    Methods Enzymol; 2011; 487():319-69. PubMed ID: 21187230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of Nanotherapy Response as a Function of the Tumor Microenvironment: Focus on Liver Metastasis.
    Frieboes HB; Raghavan S; Godin B
    Front Bioeng Biotechnol; 2020; 8():1011. PubMed ID: 32974325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in drug delivery systems for enhancing drug penetration into tumors.
    He B; Sui X; Yu B; Wang S; Shen Y; Cong H
    Drug Deliv; 2020 Dec; 27(1):1474-1490. PubMed ID: 33100061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical modeling and computational prediction of cancer drug resistance.
    Sun X; Hu B
    Brief Bioinform; 2018 Nov; 19(6):1382-1399. PubMed ID: 28981626
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.