These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24303876)

  • 1. Electrical modulation of fano resonance in plasmonic nanostructures using graphene.
    Emani NK; Chung TF; Kildishev AV; Shalaev VM; Chen YP; Boltasseva A
    Nano Lett; 2014 Jan; 14(1):78-82. PubMed ID: 24303876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically tunable damping of plasmonic resonances with graphene.
    Emani NK; Chung TF; Ni X; Kildishev AV; Chen YP; Boltasseva A
    Nano Lett; 2012 Oct; 12(10):5202-6. PubMed ID: 22950873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Fano Resonances with Tunable Electromagnetic Properties in Graphene Plasmonic Metamolecules.
    Zhou H; Su S; Qiu W; Zhao Z; Lin Z; Qiu P; Kan Q
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32013141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared.
    Mousavi SH; Kholmanov I; Alici KB; Purtseladze D; Arju N; Tatar K; Fozdar DY; Suk JW; Hao Y; Khanikaev AB; Ruoff RS; Shvets G
    Nano Lett; 2013 Mar; 13(3):1111-7. PubMed ID: 23398172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor.
    Zhang J; Hong Q; Zou J; He Y; Yuan X; Zhu Z; Qin S
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32143457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene Multiple Fano Resonances Based on Asymmetric Hybrid Metamaterial.
    Yan Z; Zhang Z; Du W; Wu W; Hu T; Yu Z; Gu P; Chen J; Tang C
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33276469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strongly coupled evenly divided disks: a new compact and tunable platform for plasmonic Fano resonances.
    Zhang S; Zhu X; Xiao W; Shi H; Wang Y; Chen Z; Chen Y; Sun K; Muskens OL; De Groot CH; Liu SD; Duan H
    Nanotechnology; 2020 Aug; 31(32):325202. PubMed ID: 32340011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical nanoantenna with muitiple surface plasmon resonances for enhancements in near-field intensity and far-field radiation.
    Liu S; Ju P; Lv L; Tang P; Wang H; Zhong L; Lu X
    Opt Express; 2021 Oct; 29(22):35678-35690. PubMed ID: 34808997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terahertz tunable graphene Fano resonance.
    He X; Lin F; Liu F; Shi W
    Nanotechnology; 2016 Dec; 27(48):485202. PubMed ID: 27796280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Multipolar Fano Resonances and Electric Field Enhancements in Au Ring-Disk Plasmonic Nanostructures.
    Qiu R; Lin H; Huang J; Liang C; Yi Z
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization-selective dynamically tunable multispectral Fano resonances: decomposing of subgroup plasmonic resonances.
    Liu J; Zhao X; Gong R; Wu T; Gong C; Shao X
    Opt Express; 2015 Oct; 23(21):27343-53. PubMed ID: 26480396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna.
    Qin Y; Xiong XYZ; Sha WEI; Jiang LJ
    J Phys Condens Matter; 2018 Apr; 30(14):144007. PubMed ID: 29480167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation of plasmonic waves in graphene by guided-mode resonances.
    Gao W; Shu J; Qiu C; Xu Q
    ACS Nano; 2012 Sep; 6(9):7806-13. PubMed ID: 22862147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanically reconfigurable architectured graphene for tunable plasmonic resonances.
    Kang P; Kim KH; Park HG; Nam S
    Light Sci Appl; 2018; 7():17. PubMed ID: 30839518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Demonstration of Phase Modulation and Motion Sensing Using Graphene-Integrated Metasurfaces.
    Dabidian N; Dutta-Gupta S; Kholmanov I; Lai K; Lu F; Lee J; Jin M; Trendafilov S; Khanikaev A; Fallahazad B; Tutuc E; Belkin MA; Shvets G
    Nano Lett; 2016 Jun; 16(6):3607-15. PubMed ID: 27152557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broad electrical tuning of graphene-loaded plasmonic antennas.
    Yao Y; Kats MA; Genevet P; Yu N; Song Y; Kong J; Capasso F
    Nano Lett; 2013 Mar; 13(3):1257-64. PubMed ID: 23441688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Array.
    Lee B; Park J; Han GH; Ee HS; Naylor CH; Liu W; Johnson AT; Agarwal R
    Nano Lett; 2015 May; 15(5):3646-53. PubMed ID: 25926239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexistence of two graphene-induced modulation effects on surface plasmons in hybrid graphene plasmonic nanostructures.
    Zhang ZY; Li DM; Zhang H; Wang W; Zhu YH; Zhang S; Zhang XP; Yi JM
    Opt Express; 2019 Apr; 27(9):13503-13515. PubMed ID: 31052871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures.
    Butet J; Martin OJ
    Opt Express; 2014 Dec; 22(24):29693-707. PubMed ID: 25606900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconfigurable sensor and nanoantenna by graphene-tuned Fano resonance.
    Wang CL; Wang YQ; Hu H; Liu DJ; Gao DL; Gao L
    Opt Express; 2019 Nov; 27(24):35925-35934. PubMed ID: 31878757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.