BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

633 related articles for article (PubMed ID: 24303987)

  • 1. Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading.
    Blackburn JT; Norcross MF; Cannon LN; Zinder SM
    J Athl Train; 2013; 48(6):764-72. PubMed ID: 24303987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hamstrings Stiffness and Landing Biomechanics Linked to Anterior Cruciate Ligament Loading.
    Blackburn JT; Norcross MF; Cannon LN; Zinder SM
    J Athl Train; 2013 Jun; ():. PubMed ID: 23768123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses.
    Norcross MF; Lewek MD; Padua DA; Shultz SJ; Weinhold PS; Blackburn JT
    J Athl Train; 2013; 48(6):748-56. PubMed ID: 23944382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Associations Among Eccentric Hamstrings Strength, Hamstrings Stiffness, and Jump-Landing Biomechanics.
    Dewig DR; Goodwin JS; Pietrosimone BG; Blackburn JT
    J Athl Train; 2020 Jul; 55(7):717-723. PubMed ID: 32432902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.
    Norcross MF; Lewek MD; Padua DA; Shultz SJ; Weinhold PS; Blackburn JT
    J Athl Train; 2013; 48(6):757-63. PubMed ID: 23944381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ankle-dorsiflexion range of motion and landing biomechanics.
    Fong CM; Blackburn JT; Norcross MF; McGrath M; Padua DA
    J Athl Train; 2011; 46(1):5-10. PubMed ID: 21214345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular and biomechanical landing performance subsequent to ipsilateral semitendinosus and gracilis autograft anterior cruciate ligament reconstruction.
    Vairo GL; Myers JB; Sell TC; Fu FH; Harner CD; Lephart SM
    Knee Surg Sports Traumatol Arthrosc; 2008 Jan; 16(1):2-14. PubMed ID: 17973098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of trunk-load and trunk-position adaptations on knee anterior shear and hamstrings muscle forces during landing.
    Kulas AS; Hortobágyi T; Devita P
    J Athl Train; 2010; 45(1):5-15. PubMed ID: 20064042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.
    Haddas R; Hooper T; James CR; Sizer PS
    J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk.
    Morgan KD; Donnelly CJ; Reinbolt JA
    J Biomech; 2014 Oct; 47(13):3295-302. PubMed ID: 25218505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landing Kinematics and Kinetics at the Knee During Different Landing Tasks.
    Heebner NR; Rafferty DM; Wohleber MF; Simonson AJ; Lovalekar M; Reinert A; Sell TC
    J Athl Train; 2017 Dec; 52(12):1101-1108. PubMed ID: 29154692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV
    J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle contributions to tibiofemoral shear forces and valgus and rotational joint moments during single leg drop landing.
    Maniar N; Schache AG; Pizzolato C; Opar DA
    Scand J Med Sci Sports; 2020 Sep; 30(9):1664-1674. PubMed ID: 32416625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia.
    Shimokochi Y; Ambegaonkar JP; Meyer EG
    J Athl Train; 2016 Sep; 51(9):669-681. PubMed ID: 27723362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury.
    Podraza JT; White SC
    Knee; 2010 Aug; 17(4):291-5. PubMed ID: 20303276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower extremity muscle activation and knee flexion during a jump-landing task.
    Walsh M; Boling MC; McGrath M; Blackburn JT; Padua DA
    J Athl Train; 2012; 47(4):406-13. PubMed ID: 22889656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Landing biomechanics in participants with different static lower extremity alignment profiles.
    Nguyen AD; Shultz SJ; Schmitz RJ
    J Athl Train; 2015 May; 50(5):498-507. PubMed ID: 25658815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is knee neuromuscular activity related to anterior cruciate ligament injury risk? A pilot study.
    Smeets A; Malfait B; Dingenen B; Robinson MA; Vanrenterghem J; Peers K; Nijs S; Vereecken S; Staes F; Verschueren S
    Knee; 2019 Jan; 26(1):40-51. PubMed ID: 30415973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quadriceps Neuromuscular Function and Jump-Landing Sagittal-Plane Knee Biomechanics After Anterior Cruciate Ligament Reconstruction.
    Ward SH; Blackburn JT; Padua DA; Stanley LE; Harkey MS; Luc-Harkey BA; Pietrosimone B
    J Athl Train; 2018 Feb; 53(2):135-143. PubMed ID: 29350554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tibial plateau geometry influences lower extremity biomechanics during landing.
    Shultz SJ; Schmitz RJ
    Am J Sports Med; 2012 Sep; 40(9):2029-36. PubMed ID: 22837428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.