BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

633 related articles for article (PubMed ID: 24303987)

  • 21. Strain Response of the Anterior Cruciate Ligament to Uniplanar and Multiplanar Loads During Simulated Landings: Implications for Injury Mechanism.
    Kiapour AM; Demetropoulos CK; Kiapour A; Quatman CE; Wordeman SC; Goel VK; Hewett TE
    Am J Sports Med; 2016 Aug; 44(8):2087-96. PubMed ID: 27159285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Young Athletes With Quadriceps Femoris Strength Asymmetry at Return to Sport After Anterior Cruciate Ligament Reconstruction Demonstrate Asymmetric Single-Leg Drop-Landing Mechanics.
    Ithurburn MP; Paterno MV; Ford KR; Hewett TE; Schmitt LC
    Am J Sports Med; 2015 Nov; 43(11):2727-37. PubMed ID: 26359376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Jump-landing biomechanics and knee-laxity change across the menstrual cycle in women with anterior cruciate ligament reconstruction.
    Bell DR; Blackburn JT; Hackney AC; Marshall SW; Beutler AI; Padua DA
    J Athl Train; 2014; 49(2):154-62. PubMed ID: 24568229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Individuals with chronic ankle instability exhibit altered landing knee kinematics: potential link with the mechanism of loading for the anterior cruciate ligament.
    Terada M; Pietrosimone B; Gribble PA
    Clin Biomech (Bristol, Avon); 2014 Dec; 29(10):1125-30. PubMed ID: 25306177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relative strain in the anterior cruciate ligament and medial collateral ligament during simulated jump landing and sidestep cutting tasks: implications for injury risk.
    Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE
    Am J Sports Med; 2015 Sep; 43(9):2259-69. PubMed ID: 26150588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiplanar Loading of the Knee and Its Influence on Anterior Cruciate Ligament and Medial Collateral Ligament Strain During Simulated Landings and Noncontact Tears.
    Bates NA; Schilaty ND; Nagelli CV; Krych AJ; Hewett TE
    Am J Sports Med; 2019 Jul; 47(8):1844-1853. PubMed ID: 31150273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quadriceps force and anterior tibial force occur obviously later than vertical ground reaction force: a simulation study.
    Ueno R; Ishida T; Yamanaka M; Taniguchi S; Ikuta R; Samukawa M; Saito H; Tohyama H
    BMC Musculoskelet Disord; 2017 Nov; 18(1):467. PubMed ID: 29151023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dependence of cruciate-ligament loading on muscle forces and external load.
    Pandy MG; Shelburne KB
    J Biomech; 1997 Oct; 30(10):1015-24. PubMed ID: 9391868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone.
    Shin CS; Chaudhari AM; Andriacchi TP
    Med Sci Sports Exerc; 2011 Aug; 43(8):1484-91. PubMed ID: 21266934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Association Between the Medial-Lateral Quadriceps and Hamstring Muscle Thickness and the Knee Kinematics and Kinetics During Single-Leg Landing.
    Jeong J; Choi DH; Shin CS
    Sports Health; 2023; 15(4):519-526. PubMed ID: 36856193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trunk and hip biomechanics influence anterior cruciate loading mechanisms in physically active participants.
    Frank B; Bell DR; Norcross MF; Blackburn JT; Goerger BM; Padua DA
    Am J Sports Med; 2013 Nov; 41(11):2676-83. PubMed ID: 23884306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity.
    Blackburn JT; Padua DA
    J Athl Train; 2009; 44(2):174-9. PubMed ID: 19295962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks.
    Dai B; Garrett WE; Gross MT; Padua DA; Queen RM; Yu B
    Am J Sports Med; 2015 Feb; 43(2):466-74. PubMed ID: 25367015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The relationships among sagittal-plane lower extremity moments: implications for landing strategy in anterior cruciate ligament injury prevention.
    Shimokochi Y; Yong Lee S; Shultz SJ; Schmitz RJ
    J Athl Train; 2009; 44(1):33-8. PubMed ID: 19180216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual-Motor Control of Drop Landing After Anterior Cruciate Ligament Reconstruction.
    Grooms DR; Chaudhari A; Page SJ; Nichols-Larsen DS; Onate JA
    J Athl Train; 2018 May; 53(5):486-496. PubMed ID: 29749751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury.
    Ameer MA; Muaidi QI
    Phys Sportsmed; 2017 Sep; 45(3):337-343. PubMed ID: 28628348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preferential loading of the ACL compared with the MCL during landing: a novel in sim approach yields the multiplanar mechanism of dynamic valgus during ACL injuries.
    Quatman CE; Kiapour AM; Demetropoulos CK; Kiapour A; Wordeman SC; Levine JW; Goel VK; Hewett TE
    Am J Sports Med; 2014 Jan; 42(1):177-86. PubMed ID: 24124198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Landing mechanics between noninjured women and women with anterior cruciate ligament reconstruction during 2 jump tasks.
    Ortiz A; Olson S; Libby CL; Trudelle-Jackson E; Kwon YH; Etnyre B; Bartlett W
    Am J Sports Med; 2008 Jan; 36(1):149-57. PubMed ID: 17940142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Vivo Anterior Cruciate Ligament Deformation During a Single-Legged Jump Measured by Magnetic Resonance Imaging and High-Speed Biplanar Radiography.
    Englander ZA; Baldwin EL; Smith WAR; Garrett WE; Spritzer CE; DeFrate LE
    Am J Sports Med; 2019 Nov; 47(13):3166-3172. PubMed ID: 31593498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury.
    Shimokochi Y; Ambegaonkar JP; Meyer EG; Lee SY; Shultz SJ
    Knee Surg Sports Traumatol Arthrosc; 2013 Apr; 21(4):888-97. PubMed ID: 22543471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.