These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 24304216)
1. Influence of soluble PEG-OH incorporation in a 3D cell-laden PEG-fibrinogen (PF) hydrogel on smooth muscle cell morphology and growth. Lee BH; Tin SP; Chaw SY; Cao Y; Xia Y; Steele TW; Seliktar D; Bianco-Peled H; Venkatraman SS J Biomater Sci Polym Ed; 2014; 25(4):394-409. PubMed ID: 24304216 [TBL] [Abstract][Full Text] [Related]
2. Nanostructuring PEG-fibrinogen hydrogels to control cellular morphogenesis. Frisman I; Seliktar D; Bianco-Peled H Biomaterials; 2011 Nov; 32(31):7839-46. PubMed ID: 21784517 [TBL] [Abstract][Full Text] [Related]
3. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Almany L; Seliktar D Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249 [TBL] [Abstract][Full Text] [Related]
4. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Dikovsky D; Bianco-Peled H; Seliktar D Biomaterials; 2006 Mar; 27(8):1496-506. PubMed ID: 16243393 [TBL] [Abstract][Full Text] [Related]
5. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429 [TBL] [Abstract][Full Text] [Related]
6. Nanostructuring biosynthetic hydrogels for tissue engineering: a cellular and structural analysis. Frisman I; Seliktar D; Bianco-Peled H Acta Biomater; 2012 Jan; 8(1):51-60. PubMed ID: 21855662 [TBL] [Abstract][Full Text] [Related]
7. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Gonen-Wadmany M; Oss-Ronen L; Seliktar D Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008 [TBL] [Abstract][Full Text] [Related]
8. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Liu Y; Chan-Park MB Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function. Subramani K; Birch MA Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation. Cao Y; Lee BH; Peled HB; Venkatraman SS J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015 [TBL] [Abstract][Full Text] [Related]
12. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching. Sokic S; Christenson M; Larson J; Papavasiliou G Macromol Biosci; 2014 May; 14(5):731-9. PubMed ID: 24443002 [TBL] [Abstract][Full Text] [Related]
13. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Peyton SR; Raub CB; Keschrumrus VP; Putnam AJ Biomaterials; 2006 Oct; 27(28):4881-93. PubMed ID: 16762407 [TBL] [Abstract][Full Text] [Related]
14. The influence of ascorbic acid, TGF-beta1, and cell-mediated remodeling on the bulk mechanical properties of 3-D PEG-fibrinogen constructs. Kim PD; Peyton SR; VanStrien AJ; Putnam AJ Biomaterials; 2009 Aug; 30(23-24):3854-64. PubMed ID: 19443026 [TBL] [Abstract][Full Text] [Related]