These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24304216)

  • 1. Influence of soluble PEG-OH incorporation in a 3D cell-laden PEG-fibrinogen (PF) hydrogel on smooth muscle cell morphology and growth.
    Lee BH; Tin SP; Chaw SY; Cao Y; Xia Y; Steele TW; Seliktar D; Bianco-Peled H; Venkatraman SS
    J Biomater Sci Polym Ed; 2014; 25(4):394-409. PubMed ID: 24304216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructuring PEG-fibrinogen hydrogels to control cellular morphogenesis.
    Frisman I; Seliktar D; Bianco-Peled H
    Biomaterials; 2011 Nov; 32(31):7839-46. PubMed ID: 21784517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L; Seliktar D
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration.
    Dikovsky D; Bianco-Peled H; Seliktar D
    Biomaterials; 2006 Mar; 27(8):1496-506. PubMed ID: 16243393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructuring biosynthetic hydrogels for tissue engineering: a cellular and structural analysis.
    Frisman I; Seliktar D; Bianco-Peled H
    Acta Biomater; 2012 Jan; 8(1):51-60. PubMed ID: 21855662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering.
    Gonen-Wadmany M; Oss-Ronen L; Seliktar D
    Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.
    Liu Y; Chan-Park MB
    Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.
    Frith JE; Menzies DJ; Cameron AR; Ghosh P; Whitehead DL; Gronthos S; Zannettino AC; Cooper-White JJ
    Biomaterials; 2014 Jan; 35(4):1150-62. PubMed ID: 24215733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching.
    Sokic S; Christenson M; Larson J; Papavasiliou G
    Macromol Biosci; 2014 May; 14(5):731-9. PubMed ID: 24443002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells.
    Peyton SR; Raub CB; Keschrumrus VP; Putnam AJ
    Biomaterials; 2006 Oct; 27(28):4881-93. PubMed ID: 16762407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of ascorbic acid, TGF-beta1, and cell-mediated remodeling on the bulk mechanical properties of 3-D PEG-fibrinogen constructs.
    Kim PD; Peyton SR; VanStrien AJ; Putnam AJ
    Biomaterials; 2009 Aug; 30(23-24):3854-64. PubMed ID: 19443026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-dependent cellular morphogenesis and matrix stiffening in proteolytically responsive hydrogels.
    Kesselman D; Kossover O; Mironi-Harpaz I; Seliktar D
    Acta Biomater; 2013 Aug; 9(8):7630-9. PubMed ID: 23624218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration.
    DeLong SA; Moon JJ; West JL
    Biomaterials; 2005 Jun; 26(16):3227-34. PubMed ID: 15603817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats.
    Jwo SC; Chiu CH; Tang SJ; Hsieh MF
    Biomed Mater; 2013 Dec; 8(6):065002. PubMed ID: 24225182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogels based on dual curable chitosan-graft-polyethylene glycol-graft-methacrylate: application to layer-by-layer cell encapsulation.
    Poon YF; Cao Y; Liu Y; Chan V; Chan-Park MB
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):2012-25. PubMed ID: 20568698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibrinogen-Based Hydrogel Modulus and Ligand Density Effects on Cell Morphogenesis in Two-Dimensional and Three-Dimensional Cell Cultures.
    Yosef A; Kossover O; Mironi-Harpaz I; Mauretti A; Melino S; Mizrahi J; Seliktar D
    Adv Healthc Mater; 2019 Jul; 8(13):e1801436. PubMed ID: 31081289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior.
    Munoz-Pinto DJ; Bulick AS; Hahn MS
    J Biomed Mater Res A; 2009 Jul; 90(1):303-16. PubMed ID: 19402139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.