These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 24304716)

  • 1. Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor.
    Getsin I; Nalbandian GH; Yee DC; Vastermark A; Paparoditis PC; Reddy VS; Saier MH
    BMC Microbiol; 2013 Dec; 13():279. PubMed ID: 24304716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator.
    Nag A; Mehra S
    Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33483304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor.
    Pérez J; Muñoz-Dorado J; Braña AF; Shimkets LJ; Sevillano L; Santamaría RI
    Microb Biotechnol; 2011 Mar; 4(2):175-83. PubMed ID: 21342463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NgcE
    Iinuma C; Saito A; Ohnuma T; Tenconi E; Rosu A; Colson S; Mizutani Y; Liu F; Świątek-Połatyńska M; van Wezel GP; Rigali S; Fujii T; Miyashita K
    Microbes Environ; 2018 Sep; 33(3):272-281. PubMed ID: 30089751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus.
    Lee N; Kim W; Chung J; Lee Y; Cho S; Jang KS; Kim SC; Palsson B; Cho BK
    ISME J; 2020 May; 14(5):1111-1124. PubMed ID: 31992858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function and evolution of two forms of SecDF homologs in Streptomyces coelicolor.
    Zhou Z; Li Y; Sun N; Sun Z; Lv L; Wang Y; Shen L; Li YQ
    PLoS One; 2014; 9(8):e105237. PubMed ID: 25140821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of new function in the GTP cyclohydrolase II proteins of Streptomyces coelicolor.
    Spoonamore JE; Dahlgran AL; Jacobsen NE; Bandarian V
    Biochemistry; 2006 Oct; 45(39):12144-55. PubMed ID: 17002314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding functional divergence in proteins by studying intragenomic homologues.
    Spoonamore JE; Bandarian V
    Biochemistry; 2008 Feb; 47(8):2592-600. PubMed ID: 18281960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome mining and homologous comparison strategy for digging exporters contributing self-resistance in natamycin-producing Streptomyces strains.
    Shan Y; Guo D; Gu Q; Li Y; Li Y; Chen Y; Guan W
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):817-831. PubMed ID: 31820071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary dynamics of rhomboid proteases in Streptomycetes.
    Novick PA; Carmona NM; Trujillo M
    BMC Res Notes; 2015 Jun; 8():234. PubMed ID: 26054641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole transcriptome analysis and gene deletion to understand the chloramphenicol resistance mechanism and develop a screening method for homologous recombination in Myxococcus xanthus.
    Yang YJ; Singh RP; Lan X; Zhang CS; Sheng DH; Li YQ
    Microb Cell Fact; 2019 Jul; 18(1):123. PubMed ID: 31291955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses.
    Lorca GL; Barabote RD; Zlotopolski V; Tran C; Winnen B; Hvorup RN; Stonestrom AJ; Nguyen E; Huang LW; Kim DS; Saier MH
    Biochim Biophys Acta; 2007 Jun; 1768(6):1342-66. PubMed ID: 17490609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities.
    Paulsen IT; Sliwinski MK; Saier MH
    J Mol Biol; 1998 Apr; 277(3):573-92. PubMed ID: 9533881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular biology of Myxococcus xanthus.
    Konovalova A; Petters T; Søgaard-Andersen L
    FEMS Microbiol Rev; 2010 Mar; 34(2):89-106. PubMed ID: 19895646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The drug:H⁺ antiporters of family 2 (DHA2), siderophore transporters (ARN) and glutathione:H⁺ antiporters (GEX) have a common evolutionary origin in hemiascomycete yeasts.
    Dias PJ; Sá-Correia I
    BMC Genomics; 2013 Dec; 14():901. PubMed ID: 24345006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The functions of Sco proteins from genome-based analysis.
    Banci L; Bertini I; Cavallaro G; Rosato A
    J Proteome Res; 2007 Apr; 6(4):1568-79. PubMed ID: 17300187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes.
    Ren Q; Paulsen IT
    J Mol Microbiol Biotechnol; 2007; 12(3-4):165-79. PubMed ID: 17587866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional genome annotation through phylogenomic mapping.
    Srinivasan BS; Caberoy NB; Suen G; Taylor RG; Shah R; Tengra F; Goldman BS; Garza AG; Welch RD
    Nat Biotechnol; 2005 Jun; 23(6):691-8. PubMed ID: 15940241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic data mining reveals a rich repertoire of transport proteins in Streptomyces.
    Zhou Z; Sun N; Wu S; Li YQ; Wang Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):510. PubMed ID: 27557108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Absence of Pupylation (Prokaryotic Ubiquitin-Like Protein Modification) Affects Morphological and Physiological Differentiation in Streptomyces coelicolor.
    Boubakri H; Seghezzi N; Duchateau M; Gominet M; Kofroňová O; Benada O; Mazodier P; Pernodet JL
    J Bacteriol; 2015 Nov; 197(21):3388-99. PubMed ID: 26283768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.