These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24304861)

  • 1. The mechanical actions of muscles predict the direction of muscle activation during postural perturbations in the cat hindlimb.
    Honeycutt CF; Nichols TR
    J Neurophysiol; 2014 Mar; 111(5):900-7. PubMed ID: 24304861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle spindle responses to horizontal support surface perturbation in the anesthetized cat: insights into the role of autogenic feedback in whole body postural control.
    Honeycutt CF; Nardelli P; Cope TC; Nichols TR
    J Neurophysiol; 2012 Sep; 108(5):1253-61. PubMed ID: 22673334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weight support and balance during perturbed stance in the chronic spinal cat.
    Macpherson JM; Fung J
    J Neurophysiol; 1999 Dec; 82(6):3066-81. PubMed ID: 10601442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromyographic responses from the hindlimb muscles of the decerebrate cat to horizontal support surface perturbations.
    Honeycutt CF; Gottschall JS; Nichols TR
    J Neurophysiol; 2009 Jun; 101(6):2751-61. PubMed ID: 19321638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional constraint of endpoint force emerges from hindlimb anatomy.
    Bunderson NE; McKay JL; Ting LH; Burkholder TJ
    J Exp Biol; 2010 Jun; 213(Pt 12):2131-41. PubMed ID: 20511528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The decerebrate cat generates the essential features of the force constraint strategy.
    Honeycutt CF; Nichols TR
    J Neurophysiol; 2010 Jun; 103(6):3266-73. PubMed ID: 20089811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-joint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb.
    van Antwerp KW; Burkholder TJ; Ting LH
    J Biomech; 2007; 40(16):3570-9. PubMed ID: 17640652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two functional muscle groupings during postural equilibrium tasks in standing cats.
    Jacobs R; Macpherson JM
    J Neurophysiol; 1996 Oct; 76(4):2402-11. PubMed ID: 8899613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic postural responses in the cat: responses of hindlimb muscles to horizontal perturbations of stance in multiple directions.
    Rushmer DS; Moore SP; Windus SL; Russell CJ
    Exp Brain Res; 1988; 71(1):93-102. PubMed ID: 3416962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of biomechanics and muscle activation strategy in the production of endpoint force patterns in the cat hindlimb.
    Lemay MA; Bhowmik-Stoker M; McConnell GC; Grill WM
    J Biomech; 2007; 40(16):3679-87. PubMed ID: 17692854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attributes of quiet stance in the chronic spinal cat.
    Fung J; Macpherson JM
    J Neurophysiol; 1999 Dec; 82(6):3056-65. PubMed ID: 10601441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of ground reaction forces by hindlimb muscles during cat locomotion.
    Kaya M; Leonard TR; Herzog W
    J Biomech; 2006; 39(15):2752-66. PubMed ID: 16310793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical capabilities influence postural control strategies in the cat hindlimb.
    McKay JL; Burkholder TJ; Ting LH
    J Biomech; 2007; 40(10):2254-60. PubMed ID: 17156787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional muscle synergies constrain force production during postural tasks.
    McKay JL; Ting LH
    J Biomech; 2008; 41(2):299-306. PubMed ID: 17980370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanical action of proprioceptive length feedback in a model of cat hindlimb.
    Burkholder TJ; Nicols TR
    Motor Control; 2000 Apr; 4(2):201-20. PubMed ID: 11508248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of spinal cord injury on neural encoding of spontaneous postural perturbations in the hindlimb sensorimotor cortex.
    Dougherty JB; Disse GD; Bridges NR; Moxon KA
    J Neurophysiol; 2021 Nov; 126(5):1555-1567. PubMed ID: 34379540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of cutaneous feedback alters magnitude but not direction of muscle responses to postural perturbations in the decerebrate cat.
    Honeycutt CF; Nichols TR
    Exp Brain Res; 2010 Jun; 203(4):765-71. PubMed ID: 20473753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EMG responses to maintain stance during multidirectional surface translations.
    Henry SM; Fung J; Horak FB
    J Neurophysiol; 1998 Oct; 80(4):1939-50. PubMed ID: 9772251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional sensitivity of stretch reflexes and balance corrections for normal subjects in the roll and pitch planes.
    Carpenter MG; Allum JH; Honegger F
    Exp Brain Res; 1999 Nov; 129(1):93-113. PubMed ID: 10550507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.