These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24305169)

  • 1. On the amyloid datasets used for training PAFIG--how (not) to extend the experimental dataset of hexapeptides.
    Kotulska M; Unold O
    BMC Bioinformatics; 2013 Dec; 14():351. PubMed ID: 24305169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FISH Amyloid - a new method for finding amyloidogenic segments in proteins based on site specific co-occurrence of aminoacids.
    Gasior P; Kotulska M
    BMC Bioinformatics; 2014 Feb; 15():54. PubMed ID: 24564523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of amyloid fibril-forming segments based on a support vector machine.
    Tian J; Wu N; Guo J; Fan Y
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S45. PubMed ID: 19208147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides.
    Stanislawski J; Kotulska M; Unold O
    BMC Bioinformatics; 2013 Jan; 14():21. PubMed ID: 23327628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WALTZ-DB: a benchmark database of amyloidogenic hexapeptides.
    Beerten J; Van Durme J; Gallardo R; Capriotti E; Serpell L; Rousseau F; Schymkowitz J
    Bioinformatics; 2015 May; 31(10):1698-700. PubMed ID: 25600945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PATH - Prediction of Amyloidogenicity by Threading and Machine Learning.
    Wojciechowski JW; Kotulska M
    Sci Rep; 2020 May; 10(1):7721. PubMed ID: 32382058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrillization propensity for short designed hexapeptides predicted by computer simulation.
    Wagoner VA; Cheon M; Chang I; Hall CK
    J Mol Biol; 2012 Mar; 416(4):598-609. PubMed ID: 22227390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a Novel Grammatical Inference Approach in Classification of Amyloidogenic Hexapeptides.
    Wieczorek W; Unold O
    Comput Math Methods Med; 2016; 2016():1782732. PubMed ID: 27051459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational study of self-assembled hexapeptide inhibitors against amyloid-β (Aβ) aggregation.
    Qiao Y; Zhang M; Liang Y; Zheng J; Liang G
    Phys Chem Chem Phys; 2016 Dec; 19(1):155-166. PubMed ID: 27929168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbamylation promotes amyloidogenesis and induces structural changes in Tau-core hexapeptide fibrils.
    Guru KrishnaKumar V; Baweja L; Ralhan K; Gupta S
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2590-2604. PubMed ID: 30071272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and physicochemical studies of amyloidogenic hexapeptides derived from human cystatin C.
    Iłowska E; Sawicka J; Szymańska A
    J Pept Sci; 2018 Jun; 24(4-5):e3073. PubMed ID: 29573035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can molecular dynamics simulations assist in design of specific inhibitors and imaging agents of amyloid aggregation? Structure, stability and free energy predictions for amyloid oligomers of VQIVYK, MVGGVV and LYQLEN.
    Berhanu WM; Masunov AE
    J Mol Model; 2011 Oct; 17(10):2423-42. PubMed ID: 21174134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GAP: towards almost 100 percent prediction for β-strand-mediated aggregating peptides with distinct morphologies.
    Thangakani AM; Kumar S; Nagarajan R; Velmurugan D; Gromiha MM
    Bioinformatics; 2014 Jul; 30(14):1983-90. PubMed ID: 24681906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 3D profile method for identifying fibril-forming segments of proteins.
    Thompson MJ; Sievers SA; Karanicolas J; Ivanova MI; Baker D; Eisenberg D
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4074-8. PubMed ID: 16537487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of urea concentration on aggregation of amyloidogenic hexapeptides (NFGAIL).
    Cai Z; Li J; Yin C; Yang Z; Wu J; Zhou R
    J Phys Chem B; 2014 Jan; 118(1):48-57. PubMed ID: 24328094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Amyloid-β Component of Human α-Synuclein Oligomers Induces Formation of New Aβ Oligomers: Insight into the Mechanisms That Link Parkinson's and Alzheimer's Diseases.
    Atsmon-Raz Y; Miller Y
    ACS Chem Neurosci; 2016 Jan; 7(1):46-55. PubMed ID: 26479553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Succinct Amyloid and Nonamyloid Patterns in Hexapeptides.
    Keresztes L; Szögi E; Varga B; Farkas V; Perczel A; Grolmusz V
    ACS Omega; 2022 Oct; 7(40):35532-35537. PubMed ID: 36249386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the A-family.
    Iconomidou VA; Chryssikos GD; Gionis V; Galanis AS; Cordopatis P; Hoenger A; Hamodrakas SJ
    J Struct Biol; 2006 Dec; 156(3):480-8. PubMed ID: 17056273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibpredictor: a computational method for rapid prediction of amyloid fibril structures.
    Tabatabaei Ghomi H; Topp EM; Lill MA
    J Mol Model; 2016 Sep; 22(9):206. PubMed ID: 27502172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breaking the amyloidogenicity code: methods to predict amyloids from amino acid sequence.
    Ahmed AB; Kajava AV
    FEBS Lett; 2013 Apr; 587(8):1089-95. PubMed ID: 23262221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.