These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

596 related articles for article (PubMed ID: 24305473)

  • 1. Mitochondrial dysfunction in the pathophysiology of renal diseases.
    Che R; Yuan Y; Huang S; Zhang A
    Am J Physiol Renal Physiol; 2014 Feb; 306(4):F367-78. PubMed ID: 24305473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc prevents indomethacin-induced renal damage in rats by ameliorating oxidative stress and mitochondrial dysfunction.
    Varghese J; Faith M; Jacob M
    Eur J Pharmacol; 2009 Jul; 614(1-3):114-21. PubMed ID: 19445918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p66SHC-mediated mitochondrial dysfunction in renal proximal tubule cells during oxidative injury.
    Arany I; Faisal A; Clark JS; Vera T; Baliga R; Nagamine Y
    Am J Physiol Renal Physiol; 2010 May; 298(5):F1214-21. PubMed ID: 20053790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
    Wang CH; Wu SB; Wu YT; Wei YH
    Exp Biol Med (Maywood); 2013 May; 238(5):450-60. PubMed ID: 23856898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidant Mechanisms in Renal Injury and Disease.
    Ratliff BB; Abdulmahdi W; Pawar R; Wolin MS
    Antioxid Redox Signal; 2016 Jul; 25(3):119-46. PubMed ID: 26906267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial dysfunction is an early event in aldosterone-induced podocyte injury.
    Su M; Dhoopun AR; Yuan Y; Huang S; Zhu C; Ding G; Liu B; Yang T; Zhang A
    Am J Physiol Renal Physiol; 2013 Aug; 305(4):F520-31. PubMed ID: 23761667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial dysfunction in the pathophysiology of renal diseases.
    Guo Y; Che R; Wang P; Zhang A
    Am J Physiol Renal Physiol; 2024 May; 326(5):F768-F779. PubMed ID: 38450435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial dysfunction as an initiating event in atherogenesis: a plausible hypothesis.
    Puddu P; Puddu GM; Galletti L; Cravero E; Muscari A
    Cardiology; 2005; 103(3):137-41. PubMed ID: 15665536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic reprogramming of human cells in response to oxidative stress: implications in the pathophysiology and therapy of mitochondrial diseases.
    Wu YT; Wu SB; Wei YH
    Curr Pharm Des; 2014; 20(35):5510-26. PubMed ID: 24606797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress, mitochondrial perturbations and fetal programming of renal disease induced by maternal smoking.
    Stangenberg S; Nguyen LT; Chen H; Al-Odat I; Killingsworth MC; Gosnell ME; Anwer AG; Goldys EM; Pollock CA; Saad S
    Int J Biochem Cell Biol; 2015 Jul; 64():81-90. PubMed ID: 25849459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology.
    Zhan M; Brooks C; Liu F; Sun L; Dong Z
    Kidney Int; 2013 Apr; 83(4):568-81. PubMed ID: 23325082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of adaptor protein p66Shc in renal pathologies.
    Wright KD; Staruschenko A; Sorokin A
    Am J Physiol Renal Physiol; 2018 Feb; 314(2):F143-F153. PubMed ID: 28978535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial involvement in neurodegenerative diseases.
    Zsurka G; Kunz WS
    IUBMB Life; 2013 Mar; 65(3):263-72. PubMed ID: 23341346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria, oxidative stress and neurodegeneration.
    Federico A; Cardaioli E; Da Pozzo P; Formichi P; Gallus GN; Radi E
    J Neurol Sci; 2012 Nov; 322(1-2):254-62. PubMed ID: 22669122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria-targeted therapies for acute kidney injury.
    Tábara LC; Poveda J; Martin-Cleary C; Selgas R; Ortiz A; Sanchez-Niño MD
    Expert Rev Mol Med; 2014 Aug; 16():e13. PubMed ID: 25104110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria Damage and Kidney Disease.
    Duann P; Lin PH
    Adv Exp Med Biol; 2017; 982():529-551. PubMed ID: 28551805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases.
    Aranda-Rivera AK; Cruz-Gregorio A; Aparicio-Trejo OE; Pedraza-Chaverri J
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial dysfunction in inherited renal disease and acute kidney injury.
    Emma F; Montini G; Parikh SM; Salviati L
    Nat Rev Nephrol; 2016 May; 12(5):267-80. PubMed ID: 26804019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hallmarks of mitochondrial dysfunction in chronic kidney disease.
    Galvan DL; Green NH; Danesh FR
    Kidney Int; 2017 Nov; 92(5):1051-1057. PubMed ID: 28893420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.