These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24305554)

  • 1. Focused plasmonic trapping of metallic particles.
    Min C; Shen Z; Shen J; Zhang Y; Fang H; Yuan G; Du L; Zhu S; Lei T; Yuan X
    Nat Commun; 2013; 4():2891. PubMed ID: 24305554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping metallic particles using focused Bloch surface waves.
    Xiang Y; Tang X; Fu Y; Lu F; Kuai Y; Min C; Chen J; Wang P; Lakowicz JR; Yuan X; Zhang D
    Nanoscale; 2020 Jan; 12(3):1688-1696. PubMed ID: 31894803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping metallic Rayleigh particles with radial polarization.
    Zhan Q
    Opt Express; 2004 Jul; 12(15):3377-82. PubMed ID: 19483862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical trapping of microparticles with two tilted-focused laser beams.
    Meng C; Shao M; Zhang XF; Zhang LS; Chen D; Zhong MC
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37409910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Plasmonic Spanner for Metal Particle Manipulation.
    Zhang Y; Shi W; Shen Z; Man Z; Min C; Shen J; Zhu S; Urbach HP; Yuan X
    Sci Rep; 2015 Oct; 5():15446. PubMed ID: 26481689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field.
    Zhang L; Dou X; Min C; Zhang Y; Du L; Xie Z; Shen J; Zeng Y; Yuan X
    Nanoscale; 2016 May; 8(18):9756-63. PubMed ID: 27117313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface.
    Zhang Y; Wang J; Shen J; Man Z; Shi W; Min C; Yuan G; Zhu S; Urbach HP; Yuan X
    Nano Lett; 2014 Nov; 14(11):6430-6. PubMed ID: 25302534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping metallic particles under resonant wavelength with 4π tight focusing of radially polarized beam.
    Cui W; Song F; Song F; Ju D; Liu S
    Opt Express; 2016 Sep; 24(18):20062-8. PubMed ID: 27607615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of permittivity on gradient force exerted on Mie spheres.
    Chen J; Li K; Li X
    J Opt Soc Am A Opt Image Sci Vis; 2018 Apr; 35(4):553-560. PubMed ID: 29603937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient optical trapping with cylindrical vector beams.
    Moradi H; Shahabadi V; Madadi E; Karimi E; Hajizadeh F
    Opt Express; 2019 Mar; 27(5):7266-7276. PubMed ID: 30876293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams.
    Kozawa Y; Sato S
    Opt Express; 2010 May; 18(10):10828-33. PubMed ID: 20588937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physics of optical tweezers.
    Nieminen TA; Knöner G; Heckenberg NR; Rubinsztein-Dunlop H
    Methods Cell Biol; 2007; 82():207-36. PubMed ID: 17586258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative study of conservative gradient force and non-conservative scattering force exerted on a spherical particle in optical tweezers.
    Li X; Zheng H; Yuen CH; Du J; Chen J; Lin Z; Ng J
    Opt Express; 2021 Aug; 29(16):25377-25387. PubMed ID: 34614870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical trapping of metallic Rayleigh particles.
    Svoboda K; Block SM
    Opt Lett; 1994 Jul; 19(13):930-2. PubMed ID: 19844491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.