BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2430588)

  • 1. Effect of cyclic AMP on lipid accumulation and metabolism in human atherosclerotic aortic cells.
    Tertov VV; Orekhov AN; Smirnov VN
    Atherosclerosis; 1986 Oct; 62(1):55-64. PubMed ID: 2430588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the role of cyclic nucleotides in the pathogenesis of human atherosclerosis.
    Tertov VV; Orekhov AN; Smirnov VN
    Biomed Biochim Acta; 1987; 46(10):727-33. PubMed ID: 2451514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agents that increase cellular cyclic AMP inhibit proliferative activity and decrease lipid content in cells cultured from atherosclerotic human aorta.
    Tertov VV; Orekhov AN; Smirnov VN
    Artery; 1986; 13(6):365-72. PubMed ID: 2430551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Decrease in the lipid content of human atherosclerotic aorta cells as affected by compounds increasing the intracellular level of cyclic AMP].
    Tertov VV; Orekhov AN; Smirnov VN
    Biull Eksp Biol Med; 1984 Feb; 97(2):157-8. PubMed ID: 6199053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary culture of human aortic intima cells as a model for testing antiatherosclerotic drugs. Effects of cyclic AMP, prostaglandins, calcium antagonists, antioxidants, and lipid-lowering agents.
    Orekhov AN; Tertov VV; Kudryashov SA; Khashimov KhA; Smirnov VN
    Atherosclerosis; 1986 May; 60(2):101-10. PubMed ID: 3013216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic nucleotides and atherosclerosis: studies in primary culture of human aortic cells.
    Tertov VV; Orekhov AN; Kudryashov SA; Klibanov AL; Ivanov NN; Torchilin VP; Smirnov VN
    Exp Mol Pathol; 1987 Dec; 47(3):377-89. PubMed ID: 2445600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipids in cells of atherosclerotic and uninvolved human aorta. II. Lipid metabolism in primary culture.
    Orekhov AN; Tertov VV; Smirnov VN
    Exp Mol Pathol; 1985 Oct; 43(2):187-95. PubMed ID: 4043339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of lipoprotein lipase activity in cultured rat mesenchymal heart cells and preadipocytes by dibutyryl cyclic AMP, cholera toxin and 3-isobutyl-1-methylxanthine.
    Friedman G; Chajek-Shaul T; Stein O; Stein Y
    Biochim Biophys Acta; 1983 Jun; 752(1):106-17. PubMed ID: 6189519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Lipid metabolism in cells of human atherosclerotic aorta. Study in the primary culture].
    Tertov VV; Orekhov AN; Kosykh VA; Repin VS
    Biull Eksp Biol Med; 1982 Oct; 94(10):83-5. PubMed ID: 7171803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of prostacyclin synthesis in endothelial cells by methylisobutylxanthine is not mediated through elevated cAMP level.
    Hong SL
    Biochim Biophys Acta; 1983 Dec; 754(3):258-63. PubMed ID: 6197092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative insensitivity to glucagon of sterol synthesis in cultured rat aortic smooth muscle cells. Effect of dibutyryl cyclic AMP.
    Stout RW
    Diabetologia; 1978 Oct; 15(4):323-6. PubMed ID: 213333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiation of cholera toxin-stimulated cyclic AMP production in cultured cells by inhibitors of RNA and protein synthesis.
    Nickols GA; Brooker G
    J Biol Chem; 1980 Jan; 255(1):23-6. PubMed ID: 6153080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic adenosine monophosphate (cAMP) increases natriuretic peptide receptor C (NPR-C) expression in human aortic smooth muscle cells.
    Puggina E; Sellitti D
    Mol Cell Endocrinol; 2004 Apr; 219(1-2):161-9. PubMed ID: 15149737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phorbol ester modulation of cyclic AMP accumulation in a primary culture of rat aortic smooth muscle cells.
    Phaneuf S; Berta P; Peuch LP; Haiech J; Cavadore JC
    J Pharmacol Exp Ther; 1988 Jun; 245(3):1042-7. PubMed ID: 2838600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disorders in the system of cyclic nucleotides in atherosclerosis: cyclic AMP and cyclic GMP content and activity of related enzymes in human aorta.
    Tertov VV; Orekhov AN; Grigorian GYu ; Kurennaya GS; Kudryashov SA; Tkachuk VA; Smirnov VN
    Tissue Cell; 1987; 19(1):21-8. PubMed ID: 2882618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of cyclic AMP elevating agents on bradykinin- and carbachol-induced signal transduction in canine cultured tracheal smooth muscle cells.
    Yang CM; Hsia HC; Luo SF; Hsieh JT; Ong R
    Br J Pharmacol; 1994 Jul; 112(3):781-8. PubMed ID: 7921603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic AMP inhibits the synthesis and release of prolactin from human decidual cells.
    Handwerger S; Harman I; Costello A; Markoff E
    Mol Cell Endocrinol; 1987 Mar; 50(1-2):99-106. PubMed ID: 2438170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of eicozanoids and lipoxygenase inhibitors on the lipid metabolism of aortic cells.
    Tertov VV; Panosyan AG; Akopov SE; Orekhov AN
    Biomed Biochim Acta; 1988; 47(10-11):S286-8. PubMed ID: 3150271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of cyclic AMP signaling system in rat aortic myocytes in primary culture and aorta.
    Schoeffter P; Lugnier C; Travo C; Stoclet JC
    Lab Invest; 1989 Aug; 61(2):177-82. PubMed ID: 2474090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of thyrotropin, carbachol, and protein kinase-C stimulators on glucose transport and glucose oxidation by primary cultures of dog thyroid cells.
    Haraguchi K; Rani CS; Field JB
    Endocrinology; 1988 Sep; 123(3):1288-95. PubMed ID: 2456912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.