These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24306180)

  • 1. Detection and characterization of serine and threonine hydroxyl protons in Bacillus circulans xylanase by NMR spectroscopy.
    Brockerman JA; Okon M; McIntosh LP
    J Biomol NMR; 2014 Jan; 58(1):17-25. PubMed ID: 24306180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, dynamics, and ionization equilibria of the tyrosine residues in Bacillus circulans xylanase.
    Baturin SJ; Okon M; McIntosh LP
    J Biomol NMR; 2011 Nov; 51(3):379-94. PubMed ID: 21912982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen exchange study on the hydroxyl groups of serine and threonine residues in proteins and structure refinement using NOE restraints with polar side-chain groups.
    Takeda M; Jee J; Ono AM; Terauchi T; Kainosho M
    J Am Chem Soc; 2011 Nov; 133(43):17420-7. PubMed ID: 21955241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a buried neutral histidine in Bacillus circulans xylanase: internal dynamics and interaction with a bound water molecule.
    Connelly GP; McIntosh LP
    Biochemistry; 1998 Feb; 37(7):1810-8. PubMed ID: 9485306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circular permutation of Bacillus circulans xylanase: a kinetic and structural study.
    Reitinger S; Yu Y; Wicki J; Ludwiczek M; D'Angelo I; Baturin S; Okon M; Strynadka NC; Lutz S; Withers SG; McIntosh LP
    Biochemistry; 2010 Mar; 49(11):2464-74. PubMed ID: 20163191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a buried neutral histidine residue in Bacillus circulans xylanase: NMR assignments, pH titration, and hydrogen exchange.
    Plesniak LA; Connelly GP; Wakarchuk WW; McIntosh LP
    Protein Sci; 1996 Nov; 5(11):2319-28. PubMed ID: 8931150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-range nature of the interactions between titratable groups in Bacillus agaradhaerens family 11 xylanase: pH titration of B. agaradhaerens xylanase.
    Betz M; Löhr F; Wienk H; Rüterjans H
    Biochemistry; 2004 May; 43(19):5820-31. PubMed ID: 15134456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations.
    McIntosh LP; Naito D; Baturin SJ; Okon M; Joshi MD; Nielsen JE
    J Biomol NMR; 2011 Sep; 51(1-2):5-19. PubMed ID: 21947911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refolding the unfoldable: A systematic approach for renaturation of Bacillus circulans xylanase.
    Kötzler MP; McIntosh LP; Withers SG
    Protein Sci; 2017 Aug; 26(8):1555-1563. PubMed ID: 28466501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secondary structure and NMR assignments of Bacillus circulans xylanase.
    Plesniak LA; Wakarchuk WW; McIntosh LP
    Protein Sci; 1996 Jun; 5(6):1118-35. PubMed ID: 8762143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.
    Liepinsh E; Otting G; Wüthrich K
    J Biomol NMR; 1992 Sep; 2(5):447-65. PubMed ID: 1384851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of scalar couplings involving 2'-hydroxyl protons across hydrogen bonds in a frameshifting mRNA pseudoknot.
    Giedroc DP; Cornish PV; Hennig M
    J Am Chem Soc; 2003 Apr; 125(16):4676-7. PubMed ID: 12696863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen exchange behavior of [U-15N]-labeled oxidized and reduced iso-1-cytochrome c.
    Baxter SM; Fetrow JS
    Biochemistry; 1999 Apr; 38(14):4493-503. PubMed ID: 10194371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triple-resonance methods for complete resonance assignment of aromatic protons and directly bound heteronuclei in histidine and tryptophan residues.
    Löhr F; Rogov VV; Shi M; Bernhard F; Dötsch V
    J Biomol NMR; 2005 Aug; 32(4):309-28. PubMed ID: 16211484
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Lapin J; Awosanya EO; Esteves RJA; Nevzorov AA
    Solid State Nucl Magn Reson; 2021 Feb; 111():101701. PubMed ID: 33260039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of temperature dependent and substrate-binding cleft movements in Bacillus circulans family 11 xylanase: a molecular dynamics investigation.
    Vieira DS; Degrève L; Ward RJ
    Biochim Biophys Acta; 2009 Oct; 1790(10):1301-6. PubMed ID: 19409448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.
    Zhang R; Mroue KH; Ramamoorthy A
    Acc Chem Res; 2017 Apr; 50(4):1105-1113. PubMed ID: 28353338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of intermolecular NOE interactions in large protein complexes.
    Anglister J; Srivastava G; Naider F
    Prog Nucl Magn Reson Spectrosc; 2016 Nov; 97():40-56. PubMed ID: 27888839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular anatomy of the alkaliphilic xylanase from Bacillus halodurans C-125.
    Nishimoto M; Fushinobu S; Miyanaga A; Kitaoka M; Hayashi K
    J Biochem; 2007 May; 141(5):709-17. PubMed ID: 17383976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.