These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24306470)

  • 21. Effects of exogenously applied hydrogen peroxide on antioxidant and osmoprotectant profiles and the C3-CAM shift in the halophyte Mesembryanthemum crystallinum L.
    Surówka E; Dziurka M; Kocurek M; Goraj S; Rapacz M; Miszalski Z
    J Plant Physiol; 2016 Aug; 200():102-10. PubMed ID: 27368070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in the isozymic pattern of phosphoenolpyruvate : An early step in photoperiodic control of crassulacean acid metabolism level.
    Brulfert J; Arrabaça MC; Guerrier D; Queiroz O
    Planta; 1979 Jan; 146(2):129-33. PubMed ID: 24318049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity of enzymes of carbon metabolism during the induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum L.
    Holtum JA; Winter K
    Planta; 1982 Jun; 155(1):8-16. PubMed ID: 24271620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perturbations of malate accumulation and the endogenous rhythms of gas exchange in the Crassulacean acid metabolism plant Kalanchoë daigremontiana: testing the tonoplast-as-oscillator model.
    Wyka TP; Bohn A; Duarte HM; Kaiser F; Lüttge UE
    Planta; 2004 Aug; 219(4):705-13. PubMed ID: 15127301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of glycolysis and level of the Crassulacean acid metabolism.
    Pierre JN; Queiroz O
    Planta; 1979 Jan; 144(2):143-51. PubMed ID: 24408686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crassulacean Acid Metabolism and Crassulacean Acid Metabolism Modifications in Peperomia camptotricha.
    Sipes DL; Ting IP
    Plant Physiol; 1985 Jan; 77(1):59-63. PubMed ID: 16664028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparative study on diurnal changes in metabolite levels in the leaves of three crassulacean acid metabolism (CAM) species, Ananas comosus, Kalanchoë daigremontiana and K. pinnata.
    Chen LS; Lin Q; Nose A
    J Exp Bot; 2002 Feb; 53(367):341-50. PubMed ID: 11807138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties of phosphoenolpyruvate carboxylase in rapidly prepared, desalted leaf extracts of the Crassulacean acid metabolism plant Mesembryanthemum crystallinum L.
    Winter K
    Planta; 1982 May; 154(4):298-308. PubMed ID: 24276156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfur dioxide effects on plants exhibiting Crassulacean Acid Metabolism.
    Olszyk DM; Bytnerowicz A; Fox CA
    Environ Pollut; 1987; 43(1):47-62. PubMed ID: 15092814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on carbon flow in Crassulacean acid metabolism during the initial light period.
    Fischer A; Kluge M
    Planta; 1984 Feb; 160(2):121-8. PubMed ID: 24258414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification by Immunoadsorption and Immunochemical Properties of NADP-Dependent Malic Enzymes from Leaves of C(3), C(4), and Crassulacean Acid Metabolism Plants.
    Fathi M; Schnarrenberger C
    Plant Physiol; 1990 Mar; 92(3):710-7. PubMed ID: 16667339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leaf succulence determines the interplay between carboxylase systems and light use during Crassulacean acid metabolism in Kalanchöe species.
    Griffiths H; Robe WE; Girnus J; Maxwell K
    J Exp Bot; 2008; 59(7):1851-61. PubMed ID: 18408219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis.
    Matt P; Schurr U; Klein D; Krapp A; Stitt M
    Planta; 1998 Dec; 207(1):27-41. PubMed ID: 9951717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme).
    Cook RM; Lindsay JG; Wilkins MB; Nimmo HG
    Plant Physiol; 1995 Dec; 109(4):1301-1307. PubMed ID: 12228671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short-term changes in carbon-isotope discrimination in the C
    Borland AM; Griffiths H; Broadmeadow MS; Fordham MC; Maxwell C
    Oecologia; 1993 Sep; 95(3):444-453. PubMed ID: 28314023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diurnal changes in polyamine content, arginine and ornithine decarboxylase, and diamine oxidase in tobacco leaves.
    Gemperlová L; Nováková M; Vanková R; Eder J; Cvikrová M
    J Exp Bot; 2006; 57(6):1413-21. PubMed ID: 16556629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stomatal response to blue light in crassulacean acid metabolism plants Kalanchoe pinnata and Kalanchoe daigremontiana.
    Gotoh E; Oiwamoto K; Inoue SI; Shimazaki KI; Doi M
    J Exp Bot; 2019 Feb; 70(4):1367-1374. PubMed ID: 30576518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Distribution of C14 in molecules of malic acid synthesized by fixation of C14O2 in leaves of Bryophyllum daigremontianum Berger].
    JOLCHINE G
    Bull Soc Chim Biol (Paris); 1959; 41(2-3):227-34. PubMed ID: 13651852
    [No Abstract]   [Full Text] [Related]  

  • 39. The relationship between turgor pressure and titratable acidity in mesophyll cells of intact leaves of a Crassulacean-acid-metabolism plant, Kalanchoe daigremontiana Hamet et Perr.
    Rygol J; Winter K; Zimmermann U
    Planta; 1987 Dec; 172(4):487-93. PubMed ID: 24226067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How to resolve the enigma of diurnal malate remobilisation from the vacuole in plants with crassulacean acid metabolism?
    Ceusters N; Borland AM; Ceusters J
    New Phytol; 2021 Mar; 229(6):3116-3124. PubMed ID: 33159327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.