These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24306681)

  • 1. Translocation and metabolism of glycine betaine by barley plants in relation to water stress.
    Ladyman JA; Hitz WD; Hanson AD
    Planta; 1980 Nov; 150(3):191-6. PubMed ID: 24306681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Betaine Accumulation and [C]Formate Metabolism in Water-stressed Barley Leaves.
    Hanson AD; Nelsen CE
    Plant Physiol; 1978 Aug; 62(2):305-12. PubMed ID: 16660507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proline Accumulation in Water-stressed Barley Leaves in Relation to Translocation and the Nitrogen Budget.
    Tully RE; Hanson AD; Nelsen CE
    Plant Physiol; 1979 Mar; 63(3):518-23. PubMed ID: 16660759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiotracer evidence implicating phosphoryl and phosphatidyl bases as intermediates in betaine synthesis by water-stressed barley leaves.
    Hitz WD; Rhodes D; Hanson AD
    Plant Physiol; 1981 Oct; 68(4):814-22. PubMed ID: 16662004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Betaine Synthesis from Radioactive Precursors in Attached, Water-stressed Barley Leaves.
    Hanson AD; Scott NA
    Plant Physiol; 1980 Aug; 66(2):342-8. PubMed ID: 16661434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis, translocation, and accumulation of betaine in sugar beet and its progenitors in relation to salinity.
    Hanson AD; Wyse R
    Plant Physiol; 1982 Oct; 70(4):1191-8. PubMed ID: 16662637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water stress provokes a generalized increase in phosphatidylcholine turnover in barley leaves.
    Giddings TH; Hanson AD
    Planta; 1982 Nov; 155(6):493-501. PubMed ID: 24272115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a novel peroxisomal choline monooxygenase in barley.
    Mitsuya S; Kuwahara J; Ozaki K; Saeki E; Fujiwara T; Takabe T
    Planta; 2011 Dec; 234(6):1215-26. PubMed ID: 21769646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (52)Fe translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): evidence for the direct translocation of Fe from roots to young leaves via phloem.
    Tsukamoto T; Nakanishi H; Uchida H; Watanabe S; Matsuhashi S; Mori S; Nishizawa NK
    Plant Cell Physiol; 2009 Jan; 50(1):48-57. PubMed ID: 19073647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.
    Ishitani M; Nakamura T; Han SY; Takabe T
    Plant Mol Biol; 1995 Jan; 27(2):307-15. PubMed ID: 7888620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino Acids Translocated from Turgid and Water-stressed Barley Leaves : II. Studies with N and C.
    Hanson AD; Tully RE
    Plant Physiol; 1979 Sep; 64(3):467-71. PubMed ID: 16660989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root endophytic fungus Serendipita indica modulates barley leaf blade proteome by increasing the abundance of photosynthetic proteins in response to salinity.
    Sepehri M; Ghaffari MR; Khayam Nekoui M; Sarhadi E; Moghadam A; Khatabi B; Hosseini Salekdeh G
    J Appl Microbiol; 2021 Oct; 131(4):1870-1889. PubMed ID: 33694234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C Tracer Evidence for Synthesis of Choline and Betaine via Phosphoryl Base Intermediates in Salinized Sugarbeet Leaves.
    Hanson AD; Rhodes D
    Plant Physiol; 1983 Mar; 71(3):692-700. PubMed ID: 16662890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet--importance of long-distance translocation of betaine under normal and salt-stressed conditions.
    Yamada N; Promden W; Yamane K; Tamagake H; Hibino T; Tanaka Y; Takabe T
    J Plant Physiol; 2009 Dec; 166(18):2058-70. PubMed ID: 19647889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus retranslocation in Hordeum vulgare during early tillering.
    Greenway H; Gunn A
    Planta; 1966 Mar; 71(1):43-67. PubMed ID: 24553988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana.
    Xing W; Rajashekar CB
    Environ Exp Bot; 2001 Aug; 46(1):21-28. PubMed ID: 11378169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light stimulation of proline synthesis in water-stressed barley leaves.
    Hanson AD; Tully RE
    Planta; 1979 Jan; 145(1):45-51. PubMed ID: 24317563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Betaine aldehyde dehydrogenase in sorghum.
    Wood AJ; Saneoka H; Rhodes D; Joly RJ; Goldsbrough PB
    Plant Physiol; 1996 Apr; 110(4):1301-8. PubMed ID: 8934627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress.
    Di Martino C; Delfine S; Pizzuto R; Loreto F; Fuggi A
    New Phytol; 2003 Jun; 158(3):455-463. PubMed ID: 36056506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abscisic Acid Metabolism in Relation to Water Stress and Leaf Age in Xanthium strumarium.
    Cornish K; Zeevaart JA
    Plant Physiol; 1984 Dec; 76(4):1029-35. PubMed ID: 16663944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.