These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 24306868)

  • 21. Application of yeast-two hybrid assay to chemical genomic screens: a high-throughput system to identify novel molecules modulating plant hormone receptor complexes.
    Chini A
    Methods Mol Biol; 2014; 1056():35-43. PubMed ID: 24306860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases.
    Shin H; Shin HS; Guo Z; Blancaflor EB; Masson PH; Chen R
    Plant J; 2005 Apr; 42(2):188-200. PubMed ID: 15807782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation.
    Filatov V; Dowdle J; Smirnoff N; Ford-Lloyd B; Newbury HJ; Macnair MR
    Mol Ecol; 2006 Sep; 15(10):3045-59. PubMed ID: 16911220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane trafficking in plants: new discoveries and approaches.
    Carter CJ; Bednarek SY; Raikhel NV
    Curr Opin Plant Biol; 2004 Dec; 7(6):701-7. PubMed ID: 15491919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana.
    Krishnamurthy A; Rathinasabapathi B
    Plant Cell Environ; 2013 Oct; 36(10):1838-49. PubMed ID: 23489261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis.
    Friml J; Wiśniewska J; Benková E; Mendgen K; Palme K
    Nature; 2002 Feb; 415(6873):806-9. PubMed ID: 11845211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana.
    Ortíz-Castro R; Martínez-Trujillo M; López-Bucio J
    Plant Cell Environ; 2008 Oct; 31(10):1497-509. PubMed ID: 18657054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana.
    Pelagio-Flores R; Ortíz-Castro R; Méndez-Bravo A; Macías-Rodríguez L; López-Bucio J
    Plant Cell Physiol; 2011 Mar; 52(3):490-508. PubMed ID: 21252298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning from the Arabidopsis experience. The next gene search paradigm.
    Bressan RA; Zhang C; Zhang H; Hasegawa PM; Bohnert HJ; Zhu JK
    Plant Physiol; 2001 Dec; 127(4):1354-60. PubMed ID: 11743073
    [No Abstract]   [Full Text] [Related]  

  • 30. The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana.
    Abel S; Nguyen MD; Theologis A
    J Mol Biol; 1995 Aug; 251(4):533-49. PubMed ID: 7658471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana.
    Takahashi N; Goto N; Okada K; Takahashi H
    Planta; 2002 Dec; 216(2):203-11. PubMed ID: 12447533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidences for changes in sensitivity to auxin and in cell-wall properties during gravitropic bending of dicot stems.
    Salisbury FB; Rorabaugh PA; White R
    Physiologist; 1985 Dec; 28(6 Suppl):S95-6. PubMed ID: 3834504
    [No Abstract]   [Full Text] [Related]  

  • 33. Early stage hit triage for plant chemical genetic screens and target site identification.
    Walsh TA
    Methods Mol Biol; 2014; 1056():191-9. PubMed ID: 24306874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence imaging-based forward genetic screens to identify trafficking regulators in plants.
    Zwiewka M; Friml J
    Front Plant Sci; 2012; 3():97. PubMed ID: 22654887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Powerful partners: Arabidopsis and chemical genomics.
    Robert S; Raikhel NV; Hicks GR
    Arabidopsis Book; 2009; 7():e0109. PubMed ID: 22303245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Of weeds and men: what genomes teach us about plant cell biology.
    Assaad FF
    Curr Opin Plant Biol; 2001 Dec; 4(6):478-87. PubMed ID: 11641062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progress in using chemical biology as a tool to uncover novel regulators of plant endomembrane trafficking.
    Huang L; Li X; Zhang C
    Curr Opin Plant Biol; 2019 Dec; 52():106-113. PubMed ID: 31546132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Chemical Genetic Screening Procedure for
    Bjornson M; Song X; Dandekar A; Franz A; Drakakaki G; Dehesh K
    Bio Protoc; 2015 Jul; 5(13):. PubMed ID: 27446980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial genomics of plant adaptation.
    Melnyk RA; Haney CH
    Nat Genet; 2018 Jan; 50(1):2-4. PubMed ID: 29273805
    [No Abstract]   [Full Text] [Related]  

  • 40. Plant chemical biology: are we meeting the promise?
    Hicks GR; Raikhel NV
    Front Plant Sci; 2014; 5():455. PubMed ID: 25250041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.