These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 24307137)

  • 21. Effect of films on 1,3-dichloropropene and chloropicrin emission, soil concentration, and root-knot nematode control in a raised bed.
    Luo L; Yates SR; Ashworth DJ; Xuan R; Becker JO
    J Agric Food Chem; 2013 Mar; 61(10):2400-6. PubMed ID: 23343207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sustainable alternatives to 1,3-dichloropropene for controlling root-knot nematodes and fungal pathogens in melon crops in Mediterranean soils: Efficacy and effects on soil quality.
    Montiel-Rozas MDM; Hurtado-Navarro M; Díez-Rojo MÁ; Pascual JA; Ros M
    Environ Pollut; 2019 Apr; 247():1046-1054. PubMed ID: 30823333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directed energy system technology for the control of soilborne fungal pathogens and plant-parasitic nematodes.
    Riga E; Crisp JD; McComb GJ; Weiland JE; Zasada IA
    Pest Manag Sci; 2020 Jun; 76(6):2072-2078. PubMed ID: 31943776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beneficial effect on the soil microenvironment of Trichoderma applied after fumigation for cucumber production.
    Wu J; Zhu J; Zhang D; Cheng H; Hao B; Cao A; Yan D; Wang Q; Li Y
    PLoS One; 2022; 17(8):e0266347. PubMed ID: 35917326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of white mustard cover crop residue, soil chemical fumigation and Trichoderma spp. root treatment on black-foot disease control in grapevine.
    Berlanas C; Andrés-Sodupe M; López-Manzanares B; Maldonado-González MM; Gramaje D
    Pest Manag Sci; 2018 Dec; 74(12):2864-2873. PubMed ID: 29781195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of surface treatments and application shanks on nematode, pathogen and weed control with 1,3-dichloropropene.
    Jhala AJ; Gao S; Gerik JS; Qin R; Hanson BD
    Pest Manag Sci; 2012 Feb; 68(2):225-30. PubMed ID: 21796757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seed Rot and Damping-off of Alfalfa in Minnesota Caused by Pythium and Fusarium Species.
    Berg LE; Miller SS; Dornbusch MR; Samac DA
    Plant Dis; 2017 Nov; 101(11):1860-1867. PubMed ID: 30677318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppression on plant-parasitic nematodes using a soil fumigation strategy based on ammonium bicarbonate and its effects on the nematode community.
    Su L; Ruan Y; Yang X; Wang K; Li R; Shen Q
    Sci Rep; 2015 Dec; 5():17597. PubMed ID: 26621630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Root-knot nematode damage to a cucurbit double crop is increased by chloropicrin fumigation on the previous tomato crop.
    Desaeger JA; Bui HX
    Pest Manag Sci; 2022 Oct; 78(10):4072-4082. PubMed ID: 35674449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of Soilborne Pathogens of Zingiber officinale by Methyl Iodide and Chloropicrin in China.
    Li Y; Chi L; Mao L; Yan D; Wu Z; Ma T; Guo M; Wang Q; Ouyang C; Cao A
    Plant Dis; 2014 Mar; 98(3):384-388. PubMed ID: 30708449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drip application of methyl bromide alternative chemicals for control of soilborne pathogens and weeds.
    Gerik JS; Hanson BD
    Pest Manag Sci; 2011 Sep; 67(9):1129-33. PubMed ID: 21480465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nematotoxicity of drupacine and a Cephalotaxus alkaloid preparation against the plant-parasitic nematodes Meloidogyne incognita and Bursaphelenchus xylophilus.
    Wen Y; Meyer SL; Masler EP; Zhang F; Liao J; Wei X; Chitwood DJ
    Pest Manag Sci; 2013 Sep; 69(9):1026-33. PubMed ID: 23785026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding Why Effective Fungicides Against Individual Soilborne Pathogens Are Ineffective with Soilborne Pathogen Complexes.
    You MP; Lamichhane JR; Aubertot JN; Barbetti MJ
    Plant Dis; 2020 Mar; 104(3):904-920. PubMed ID: 31859588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Field Evaluation of Reduced Rate Brassicaceae Seed Meal Amendment and Rootstock Genotype on the Microbiome and Control of Apple Replant Disease.
    Wang L; Mazzola M
    Phytopathology; 2019 Aug; 109(8):1378-1391. PubMed ID: 30887889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimizing Soil Disinfestation Procedures for Fresh Market Tomato and Pepper Production.
    Chellemi DO; Mirusso J
    Plant Dis; 2006 May; 90(5):668-674. PubMed ID: 30781146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fumigation Using 1,3-Dichloropropene Manages
    Grabau ZJ; Sandoval-Ruiz R; Liu C
    Plant Dis; 2024 Jul; 108(7):2162-2169. PubMed ID: 38499976
    [No Abstract]   [Full Text] [Related]  

  • 37. Evaluation of Allyl Isothiocyanate as a Soil Fumigant for Tomato (
    Yu J; Vallad GE; Boyd NS
    Plant Dis; 2019 Nov; 103(11):2764-2770. PubMed ID: 31490090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficacy of Anaerobic Soil Disinfestation for Control of Prunus Replant Disease.
    Browne G; Ott N; Poret-Peterson A; Gouran H; Lampinen B
    Plant Dis; 2018 Jan; 102(1):209-219. PubMed ID: 30673462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficacy of Paecilomyces lilacinus (strain 251) for the control of root-knot nematodes.
    Kiewnick S; Sikora RA
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):123-8. PubMed ID: 15149100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of films on dimethyl disulfide emissions, vertical distribution in soil and residues remaining after fumigation.
    Wang X; Fang W; Yan D; Han D; Huang B; Ren Z; Liu J; Cao A; Wang Q
    Ecotoxicol Environ Saf; 2018 Nov; 163():76-83. PubMed ID: 30048876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.