BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24307463)

  • 1. Exciton states of the antenna and energy trapping by the reaction center.
    Novoderezhkin VI; Razjivin AP
    Photosynth Res; 1994 Oct; 42(1):9-15. PubMed ID: 24307463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New concept of energy migration and trapping in purple bacteria. Charge transfer-polaron model.
    Borisov AYu
    Biochem Mol Biol Int; 1995 Apr; 35(4):833-40. PubMed ID: 7627132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site inhomogeneity and exciton delocalization in the photosynthetic antenna.
    Dracheva TV; Novoderezhkin VI; Razjivin AP
    Photosynth Res; 1996 Sep; 49(3):269-76. PubMed ID: 24271705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation energy transfer and trapping dynamics in the core complex of the filamentous photosynthetic bacterium Roseiflexus castenholzii.
    Xin Y; Pan J; Collins AM; Lin S; Blankenship RE
    Photosynth Res; 2012 Mar; 111(1-2):149-56. PubMed ID: 21792612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A perturbed two-level model for exciton trapping in small photosynthetic systems.
    Somsen OJ; Valkunas L; van Grondelle R
    Biophys J; 1996 Feb; 70(2):669-83. PubMed ID: 8789084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy migration and trapping in a spectrally and spatially inhomogeneous light-harvesting antenna.
    Somsen OJ; van Mourik F; van Grondelle R; Valkunas L
    Biophys J; 1994 May; 66(5):1580-96. PubMed ID: 8061207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation delocalization over the whole core antenna of photosynthetic purple bacteria evidenced by non-linear pump-probe spectroscopy.
    Novoderezhkin VI; Razjivin AP
    FEBS Lett; 1995 Jul; 368(2):370-2. PubMed ID: 7628640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton dynamics in the chlorosomal antenna of the green bacterium Chloroflexus aurantiacus: experimental and theoretical studies of femtosecond pump-probe spectra.
    Yakovlev A; Novoderezhkin V; Taisova A; Fetisova Z
    Photosynth Res; 2002; 71(1-2):19-32. PubMed ID: 16228498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights into the Mechanism of Uphill Excitation Energy Transfer from Core Antenna to Reaction Center in Purple Photosynthetic Bacteria.
    Tan LM; Yu J; Kawakami T; Kobayashi M; Wang P; Wang-Otomo ZY; Zhang JP
    J Phys Chem Lett; 2018 Jun; 9(12):3278-3284. PubMed ID: 29863354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton dynamics in circular aggregates: application to antenna of photosynthetic purple bacteria.
    Novoderezhkin VI; Razjivin AP
    Biophys J; 1995 Mar; 68(3):1089-100. PubMed ID: 7756528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton delocalization in the antenna of purple bacteria: exciton spectrum calculations using Z-ray data and experimental site inhomogeneity.
    Dracheva TV; Novoderezhkin VI; Razjivin AP
    FEBS Lett; 1996 May; 387(1):81-4. PubMed ID: 8654573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of energy transfer and trapping in the light-harvesting antenna of Rhodopseudomonas viridis.
    Zhang FG; Gillbro T; van Grondelle R; Sundström V
    Biophys J; 1992 Mar; 61(3):694-703. PubMed ID: 1504241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus : I. The cytoplasmic membrane.
    Vasmel H; Van Dorssen RJ; De Vos GJ; Amesz J
    Photosynth Res; 1986 Jan; 7(3):281-94. PubMed ID: 24443124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tubular exciton models for BChl c antennae in chlorosomes from green photosynthetic bacteria.
    Buck DR; Struve WS
    Photosynth Res; 1996 Jun; 48(3):367-77. PubMed ID: 24271477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation dynamics of two spectral forms of the core complexes from photosynthetic bacterium Thermochromatium tepidum.
    Ma F; Kimura Y; Zhao XH; Wu YS; Wang P; Fu LM; Wang ZY; Zhang JP
    Biophys J; 2008 Oct; 95(7):3349-57. PubMed ID: 18502793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic modeling of exciton migration in photosynthetic systems. 3. Application of genetic algorithms to simulations of excitation dynamics in three-dimensional photosystem I core antenna/reaction center complexes.
    Trinkunas G; Holzwarth AR
    Biophys J; 1996 Jul; 71(1):351-64. PubMed ID: 8804618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically detected magnetic resonance of intact membranes from Chloroflexus aurantiacus. Evidence for exciton interaction between the RC and the B808-866 complex.
    Bordignon E; Scarzello M; Agostini G; Giacometti G; Vianelli A; Vannini C; Carbonera D
    Photosynth Res; 2002; 71(1-2):45-57. PubMed ID: 16228500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic model of primary energy transfer and trapping in photosynthetic membranes.
    Pullerits T; Freiberg A
    Biophys J; 1992 Oct; 63(4):879-96. PubMed ID: 19431849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transfer and charge separation in the purple non-sulfur bacterium Roseospirillum parvum.
    Permentier HP; Neerken S; Schmidt KA; Overmann J; Amesz J
    Biochim Biophys Acta; 2000 Nov; 1460(2-3):338-45. PubMed ID: 11106774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disordered exciton model for the core light-harvesting antenna of Rhodopseudomonas viridis.
    Novoderezhkin V; Monshouwer R; van Grondelle R
    Biophys J; 1999 Aug; 77(2):666-81. PubMed ID: 10423416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.