These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24307470)

  • 1. Competition between electron acceptors in photosynthesis: Regulation of the malate valve during CO2 fixation and nitrite reduction.
    Backhausen JE; Kitzmann C; Scheibe R
    Photosynth Res; 1994 Oct; 42(1):75-86. PubMed ID: 24307470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron acceptors in isolated intact spinach chloroplasts act hierarchically to prevent over-reduction and competition for electrons.
    Backhausen JE; Kitzmann C; Horton P; Scheibe R
    Photosynth Res; 2000; 64(1):1-13. PubMed ID: 16228439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of photosynthetic electron transport and photophosphorylation in intact chloroplasts and leaves of Spinacia oleracea L.
    Heber U; Egneus H; Hanck U; Jensen M; Köster S
    Planta; 1978 Jan; 143(1):41-9. PubMed ID: 24408259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen requirement of photosynthetic CO2 assimilation.
    Ziem-Hanck U; Heber U
    Biochim Biophys Acta; 1980 Jul; 591(2):266-74. PubMed ID: 6772210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transport pathways in spinach chloroplasts. Reduction of the primary acceptor of photosystem II by reduced nicotinamide adenine dinucleotide phosphate in the dark.
    Mills JD; Crowther D; Slovacek RE; Hind G; McCarty RE
    Biochim Biophys Acta; 1979 Jul; 547(1):127-37. PubMed ID: 37900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flux control of the malate valve in leaf cells.
    Fridlyand LE; Backhausen JE; Scheibe R
    Arch Biochem Biophys; 1998 Jan; 349(2):290-8. PubMed ID: 9448717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for Cyclic Photophosphorylation during CO(2) Fixation in Intact Chloroplasts: Studies with Antimycin A, Nitrite, and Oxaloacetate.
    Woo KC
    Plant Physiol; 1983 Jun; 72(2):313-20. PubMed ID: 16662999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of high light intensities on oxygen evolution and the light activation of NADP-malate dehydrogenase in intact spinach chloroplasts.
    Miginiac-Maslow M; Cornic G; Jacquot JP
    Planta; 1988 Dec; 173(4):468-73. PubMed ID: 24226683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malate valves: old shuttles with new perspectives.
    Selinski J; Scheibe R
    Plant Biol (Stuttg); 2019 Jan; 21 Suppl 1(Suppl Suppl 1):21-30. PubMed ID: 29933514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexibility of coupling and stoichiometry of ATP formation in intact chloroplasts.
    Heber U; Kirk MR
    Biochim Biophys Acta; 1975 Jan; 376(1):136-50. PubMed ID: 164902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of NADP-malate dehydrogenase in C4 plants: relationship among enzyme activity, NADPH to NADP ratios, and thioredoxin redox states in intact maize mesophyll chloroplasts.
    Rebeille F; Hatch MD
    Arch Biochem Biophys; 1986 Aug; 249(1):171-9. PubMed ID: 3740850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of C4 photosynthesis: regulation of activation and inactivation of NADP-malate dehydrogenase by NADP and NADPH.
    Ashton AR; Hatch MD
    Arch Biochem Biophys; 1983 Dec; 227(2):416-24. PubMed ID: 6667025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response of cyclic electron flow around photosystem I to changes in photorespiration and nitrate assimilation.
    Walker BJ; Strand DD; Kramer DM; Cousins AB
    Plant Physiol; 2014 May; 165(1):453-62. PubMed ID: 24664207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo changes of the oxidation-reduction state of NADP and of the ATP/ADP cellular ratio linked to the photosynthetic activity in Chlamydomonas reinhardtii.
    Forti G; Furia A; Bombelli P; Finazzi G
    Plant Physiol; 2003 Jul; 132(3):1464-74. PubMed ID: 12857827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADP regulates the light activation of NADP-dependent malate dehydrogenase.
    Scheibe R; Jacquot JP
    Planta; 1983 May; 157(6):548-53. PubMed ID: 24264421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in Rumex K-1 leaves.
    Zhang LT; Zhang ZS; Gao HY; Meng XL; Yang C; Liu JG; Meng QW
    BMC Plant Biol; 2012 Mar; 12():40. PubMed ID: 22429403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Complementary Roles of Chloroplast Cyclic Electron Transport and Mitochondrial Alternative Oxidase to Ensure Photosynthetic Performance.
    Chadee A; Alber NA; Dahal K; Vanlerberghe GC
    Front Plant Sci; 2021; 12():748204. PubMed ID: 34650584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of NADP-Malate Dehydrogenase Activity in Maize Mesophyll Chloroplasts.
    Leegood RC; Walker DA
    Plant Physiol; 1983 Mar; 71(3):513-8. PubMed ID: 16662858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Photosynthetic Electron Transport in Intact Spinach Chloroplasts: II. MECHANISM OF SALT-INDUCED INCREASE IN OXALOACETATE PHOTOREDUCTION.
    Mackay AB; Marsho TV
    Plant Physiol; 1980 Oct; 66(4):754-7. PubMed ID: 16661516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I.
    Joët T; Cournac L; Horvath EM; Medgyesy P; Peltier G
    Plant Physiol; 2001 Apr; 125(4):1919-29. PubMed ID: 11299371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.