These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 24307553)

  • 21. The regulatory landscape of early maize inflorescence development.
    Parvathaneni RK; Bertolini E; Shamimuzzaman M; Vera DL; Lung PY; Rice BR; Zhang J; Brown PJ; Lipka AE; Bass HW; Eveland AL
    Genome Biol; 2020 Jul; 21(1):165. PubMed ID: 32631399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grass meristems II: inflorescence architecture, flower development and meristem fate.
    Tanaka W; Pautler M; Jackson D; Hirano HY
    Plant Cell Physiol; 2013 Mar; 54(3):313-24. PubMed ID: 23378448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. tassel-less1 encodes a boron channel protein required for inflorescence development in maize.
    Leonard A; Holloway B; Guo M; Rupe M; Yu G; Beatty M; Zastrow-Hayes G; Meeley R; Llaca V; Butler K; Stefani T; Jaqueth J; Li B
    Plant Cell Physiol; 2014 Jun; 55(6):1044-54. PubMed ID: 24685595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brassinosteroids Modulate Meristem Fate and Differentiation of Unique Inflorescence Morphology in
    Yang J; Thames S; Best NB; Jiang H; Huang P; Dilkes BP; Eveland AL
    Plant Cell; 2018 Jan; 30(1):48-66. PubMed ID: 29263085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sporisorium reilianum infection changes inflorescence and branching architectures of maize.
    Ghareeb H; Becker A; Iven T; Feussner I; Schirawski J
    Plant Physiol; 2011 Aug; 156(4):2037-52. PubMed ID: 21653782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops.
    Zhang Y; Shen C; Shi J; Shi J; Zhang D
    J Exp Bot; 2024 Jan; 75(1):17-35. PubMed ID: 37935244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AGO18b negatively regulates determinacy of spikelet meristems on the tassel central spike in maize.
    Sun W; Xiang X; Zhai L; Zhang D; Cao Z; Liu L; Zhang Z
    J Integr Plant Biol; 2018 Jan; 60(1):65-78. PubMed ID: 28875539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1.
    Chuck G; Meeley R; Hake S
    Development; 2008 Sep; 135(18):3013-9. PubMed ID: 18701544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissection of genetic regulation of compound inflorescence development in
    Cheng X; Li G; Tang Y; Wen J
    Development; 2018 Feb; 145(3):. PubMed ID: 29361570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation into the underlying regulatory mechanisms shaping inflorescence architecture in Chenopodium quinoa.
    Wu Q; Bai X; Zhao W; Shi X; Xiang D; Wan Y; Wu X; Sun Y; Zhao J; Peng L; Zhao G
    BMC Genomics; 2019 Aug; 20(1):658. PubMed ID: 31419932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ectopic Expression of the Transcriptional Regulator
    Luo H; Meng D; Liu H; Xie M; Yin C; Liu F; Dong Z; Jin W
    Plant Cell; 2020 Dec; 32(12):3750-3773. PubMed ID: 32989171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A spatial transcriptome map of the developing maize ear.
    Wang Y; Luo Y; Guo X; Li Y; Yan J; Shao W; Wei W; Wei X; Yang T; Chen J; Chen L; Ding Q; Bai M; Zhuo L; Li L; Jackson D; Zhang Z; Xu X; Yan J; Liu H; Liu L; Yang N
    Nat Plants; 2024 May; 10(5):815-827. PubMed ID: 38745100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic control of branching patterns in grass inflorescences.
    Kellogg EA
    Plant Cell; 2022 Jul; 34(7):2518-2533. PubMed ID: 35258600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BARREN STALK FASTIGIATE1 is an AT-hook protein required for the formation of maize ears.
    Gallavotti A; Malcomber S; Gaines C; Stanfield S; Whipple C; Kellogg E; Schmidt RJ
    Plant Cell; 2011 May; 23(5):1756-71. PubMed ID: 21540434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural variation at the maize WUSCHEL1 locus alters stem cell organization in inflorescences.
    Chen Z; Li W; Gaines C; Buck A; Galli M; Gallavotti A
    Nat Commun; 2021 Apr; 12(1):2378. PubMed ID: 33888716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The control of spikelet meristem identity by the branched silkless1 gene in maize.
    Chuck G; Muszynski M; Kellogg E; Hake S; Schmidt RJ
    Science; 2002 Nov; 298(5596):1238-41. PubMed ID: 12424380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The control of axillary meristem fate in the maize ramosa pathway.
    Gallavotti A; Long JA; Stanfield S; Yang X; Jackson D; Vollbrecht E; Schmidt RJ
    Development; 2010 Sep; 137(17):2849-56. PubMed ID: 20699296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize.
    Bortiri E; Chuck G; Vollbrecht E; Rocheford T; Martienssen R; Hake S
    Plant Cell; 2006 Mar; 18(3):574-85. PubMed ID: 16399802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-cell-autonomous signaling associated with barley ALOG1 specifies spikelet meristem determinacy.
    Jiang G; Koppolu R; Rutten T; Hensel G; Lundqvist U; Tandron Moya YA; Huang Y; Rajaraman J; Poursarebani N; von Wirén N; Kumlehn J; Mascher M; Schnurbusch T
    Curr Biol; 2024 Jun; 34(11):2344-2358.e5. PubMed ID: 38781954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterosis in early maize ear inflorescence development: a genome-wide transcription analysis for two maize inbred lines and their hybrid.
    Ding H; Qin C; Luo X; Li L; Chen Z; Liu H; Gao J; Lin H; Shen Y; Zhao M; Lübberstedt T; Zhang Z; Pan G
    Int J Mol Sci; 2014 Aug; 15(8):13892-915. PubMed ID: 25116687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.