BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24307616)

  • 1. Stereochemistry of C18 monounsaturated cork suberin acids determined by spectroscopic techniques including (1) H-NMR multiplet analysis of olefinic protons.
    Santos S; Graça J
    Phytochem Anal; 2014; 25(3):192-200. PubMed ID: 24307616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cork suberin molecular structure: stereochemistry of the C18 epoxy and vic-diol ω-hydroxyacids and α,ω-diacids analyzed by NMR.
    Santos S; Cabral V; Graça J
    J Agric Food Chem; 2013 Jul; 61(29):7038-47. PubMed ID: 23841500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitation of aliphatic suberin in Quercus suber L. cork by FTIR spectroscopy and solid-state (13)C-NMR spectroscopy.
    Lopes MH; Neto CP; Barros AS; Rutledge D; Delgadillo I; Gil AM
    Biopolymers; 2000; 57(6):344-51. PubMed ID: 11054654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suberin of potato (Solanum tuberosum var. Nikola): comparison of the effect of cutinase CcCut1 with chemical depolymerization.
    Järvinen R; Silvestre AJ; Holopainen U; Kaimainen M; Nyyssölä A; Gil AM; Pascoal Neto C; Lehtinen P; Buchert J; Kallio H
    J Agric Food Chem; 2009 Oct; 57(19):9016-27. PubMed ID: 19739639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear aliphatic dimeric esters from cork suberin.
    Graça J; Santos S
    Biomacromolecules; 2006 Jun; 7(6):2003-10. PubMed ID: 16768426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability of cork from Portuguese Quercus suber studied by solid-state (13)C-NMR and FTIR spectroscopies.
    Lopes MH; Barros AS; Pascoal Neto C; Rutledge D; Delgadillo I; Gil AM
    Biopolymers; 2001; 62(5):268-77. PubMed ID: 11745122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition of suberin extracted upon gradual alkaline methanolysis of Quercus suber L. cork.
    Lopes MH; Gil AM; Silvestre AJ; Neto CP
    J Agric Food Chem; 2000 Feb; 48(2):383-91. PubMed ID: 10691644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A methodological approach for the simultaneous quantification of glycerol and fatty acids from cork suberin in a single GC run.
    Marques AV; Pereira H
    Phytochem Anal; 2019 Nov; 30(6):687-699. PubMed ID: 31215088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cork suberin as a new source of chemicals. 1. Isolation and chemical characterization of its composition.
    Cordeiro N; Belgacem MN; Silvestre AJ; Pascoal Neto C; Gandini A
    Int J Biol Macromol; 1998 Apr; 22(2):71-80. PubMed ID: 9585884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monoepoxy octadecadienoates and monoepoxy octadecatrienoates 1: NMR spectral characterization.
    Cui PH; Duke RK; Duke CC
    Chem Phys Lipids; 2008 Apr; 152(2):122-30. PubMed ID: 18339314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial depolymerization of genetically modified potato tuber periderm reveals intermolecular linkages in suberin polyester.
    Graça J; Cabral V; Santos S; Lamosa P; Serra O; Molinas M; Schreiber L; Kauder F; Franke R
    Phytochemistry; 2015 Sep; 117():209-219. PubMed ID: 26093489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new conjugated linoleic acid isomer, 7 trans, 9 cis-octadecadienoic acid, in cow milk, cheese, beef and human milk and adipose tissue.
    Yurawecz MP; Roach JA; Sehat N; Mossoba MM; Kramer JK; Fritsche J; Steinhart H; Ku Y
    Lipids; 1998 Aug; 33(8):803-9. PubMed ID: 9727611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas chromatography-mass spectrometry determination of metabolites of conjugated cis-9,trans-11,cis-15 18:3 fatty acid.
    Destaillats F; Sébédio JL; Berdeaux O; Juanéda P; Angers P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Jun; 820(1):15-22. PubMed ID: 15866488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring cellular responses upon fatty acid exposure by Fourier transform infrared spectroscopy and Raman spectroscopy.
    Najbjerg H; Afseth NK; Young JF; Bertram HC; Pedersen ME; Grimmer S; Vogt G; Kohler A
    Analyst; 2011 Apr; 136(8):1649-58. PubMed ID: 21347493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of 4-ethylphenol and 4-ethylguaiacol by suberin from cork.
    Gallardo-Chacón JJ; Karbowiak T
    Food Chem; 2015 Aug; 181():222-6. PubMed ID: 25794743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positional isomerization of trans-3-hexadecenoic acid employing 2-amino-2-methyl-propanol as a derivatizing agent for ethylenic bond location by gas chromatography/mass spectrometry.
    Lamberto M; Ackman RG
    Anal Biochem; 1995 Sep; 230(2):224-8. PubMed ID: 7503411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycerol-derived ester oligomers from cork suberin.
    Graça J; Santos S
    Chem Phys Lipids; 2006 Oct; 144(1):96-107. PubMed ID: 16979606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FT-IR and NMR spectroscopic studies of salicylic acid derivatives. II. Comparison of 2-hydroxy- and 2,4- and 2,5-dihydroxy derivatives.
    Jadrijević-Mladar Takac M; Vikić Topić D
    Acta Pharm; 2004 Sep; 54(3):177-91. PubMed ID: 15610615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suberin structure in potato periderm: glycerol, long-chain monomers, and glyceryl and feruloyl dimers.
    Graça J; Pereira H
    J Agric Food Chem; 2000 Nov; 48(11):5476-83. PubMed ID: 11087505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DFT Calculations of
    Venianakis T; Oikonomaki C; Siskos MG; Varras PC; Primikyri A; Alexandri E; Gerothanassis IP
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32796664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.