BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24307687)

  • 21. Phylogeny of the "forgotten" cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta.
    Brown MW; Spiegel FW; Silberman JD
    Mol Biol Evol; 2009 Dec; 26(12):2699-709. PubMed ID: 19692665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts.
    Paps J; Medina-Chacón LA; Marshall W; Suga H; Ruiz-Trillo I
    Protist; 2013 Jan; 164(1):2-12. PubMed ID: 23083534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early emergence of negative regulation of the tyrosine kinase Src by the C-terminal Src kinase.
    Taskinen B; Ferrada E; Fowler DM
    J Biol Chem; 2017 Nov; 292(45):18518-18529. PubMed ID: 28939764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling.
    Wagner MJ; Stacey MM; Liu BA; Pawson T
    Cold Spring Harb Perspect Biol; 2013 Dec; 5(12):a008987. PubMed ID: 24296166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FGF signaling emerged concomitantly with the origin of Eumetazoans.
    Bertrand S; Iwema T; Escriva H
    Mol Biol Evol; 2014 Feb; 31(2):310-8. PubMed ID: 24222650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ancient origin of the integrin-mediated adhesion and signaling machinery.
    Sebé-Pedrós A; Roger AJ; Lang FB; King N; Ruiz-Trillo I
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10142-7. PubMed ID: 20479219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes.
    Liu BA
    Methods Mol Biol; 2017; 1555():59-75. PubMed ID: 28092027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of ichthyosporeans sheds light on the origin of metazoan multicellularity.
    Suga H; Ruiz-Trillo I
    Dev Biol; 2013 May; 377(1):284-92. PubMed ID: 23333946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of SH2 domains and phosphotyrosine signalling networks.
    Liu BA; Nash PD
    Philos Trans R Soc Lond B Biol Sci; 2012 Sep; 367(1602):2556-73. PubMed ID: 22889907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A phylogenomic investigation into the origin of metazoa.
    Ruiz-Trillo I; Roger AJ; Burger G; Gray MW; Lang BF
    Mol Biol Evol; 2008 Apr; 25(4):664-72. PubMed ID: 18184723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoaffinity-engineered protein scaffold for systematically exploring native phosphotyrosine signaling complexes in tumor samples.
    Chu B; He A; Tian Y; He W; Chen P; Hu J; Xu R; Zhou W; Zhang M; Yang P; Li SSC; Sun Y; Li P; Hunter T; Tian R
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):E8863-E8872. PubMed ID: 30190427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The first identification of complete Eph-ephrin signalling in ctenophores and sponges reveals a role for neofunctionalization in the emergence of signalling domains.
    Krishnan A; Degnan BM; Degnan SM
    BMC Evol Biol; 2019 Apr; 19(1):96. PubMed ID: 31023220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphotyrosyl mimetics in the development of signal transduction inhibitors.
    Burke TR; Lee K
    Acc Chem Res; 2003 Jun; 36(6):426-33. PubMed ID: 12809529
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of Functional Diversity in the Holozoan Tyrosine Kinome.
    Yeung W; Kwon A; Taujale R; Bunn C; Venkat A; Kannan N
    Mol Biol Evol; 2021 Dec; 38(12):5625-5639. PubMed ID: 34515793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Receptor protein-tyrosine phosphatases: origin of domains (catalytic domain, Ig-related domain, fibronectin type III module) based on the sequence of the sponge Geodia cydonium.
    Müller CI; Blumbach B; Krasko A; Schröder HC
    Gene; 2001 Jan; 262(1-2):221-30. PubMed ID: 11179687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans.
    King N; Westbrook MJ; Young SL; Kuo A; Abedin M; Chapman J; Fairclough S; Hellsten U; Isogai Y; Letunic I; Marr M; Pincus D; Putnam N; Rokas A; Wright KJ; Zuzow R; Dirks W; Good M; Goodstein D; Lemons D; Li W; Lyons JB; Morris A; Nichols S; Richter DJ; Salamov A; Sequencing JG; Bork P; Lim WA; Manning G; Miller WT; McGinnis W; Shapiro H; Tjian R; Grigoriev IV; Rokhsar D
    Nature; 2008 Feb; 451(7180):783-8. PubMed ID: 18273011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation control of the ubiquitin ligase Cbl is conserved in choanoflagellates.
    Amacher JF; Hobbs HT; Cantor AC; Shah L; Rivero MJ; Mulchand SA; Kuriyan J
    Protein Sci; 2018 May; 27(5):923-932. PubMed ID: 29498112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains.
    Torruella G; Derelle R; Paps J; Lang BF; Roger AJ; Shalchian-Tabrizi K; Ruiz-Trillo I
    Mol Biol Evol; 2012 Feb; 29(2):531-44. PubMed ID: 21771718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphoryltyrosyl mimetics in the design of peptide-based signal transduction inhibitors.
    Burke TR; Yao ZJ; Liu DG; Voigt J; Gao Y
    Biopolymers; 2001; 60(1):32-44. PubMed ID: 11376431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase.
    Bradshaw JM; Mitaxov V; Waksman G
    J Mol Biol; 1999 Nov; 293(4):971-85. PubMed ID: 10543978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.