These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24307914)

  • 1. Analytical solution of multicompartment solute kinetics for hemodialysis.
    Korohoda P; Schneditz D
    Comput Math Methods Med; 2013; 2013():654726. PubMed ID: 24307914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of urea nitrogen and creatinine kinetics in hemodialysis: comparison of a variable-volume two-compartment model with a regional blood flow model and investigation of an appropriate solute kinetics model for clinical application.
    Yamada T; Hiraga S; Akiba T; Marumo F
    Blood Purif; 2000; 18(1):18-29. PubMed ID: 10686439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formal analytical solution to a regional blood flow and diffusion based urea kinetic model.
    Schneditz D; Daugirdas JT
    ASAIO J; 1994; 40(3):M667-73. PubMed ID: 8555598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A diffusion-adjusted regional blood flow model to predict solute kinetics during haemodialysis.
    Schneditz D; Platzer D; Daugirdas JT
    Nephrol Dial Transplant; 2009 Jul; 24(7):2218-24. PubMed ID: 19211646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical application of a single compartment model to urea and creatinine kinetics in dialysis therapy.
    Sanfelippo ML; Walker WE; Hall DA; Swenson RS
    Comput Programs Biomed; 1978 Mar; 8(1):44-50. PubMed ID: 639501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying hemodialysis.
    Depner TA
    Am J Nephrol; 1996; 16(1):17-28. PubMed ID: 8719762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cellular clearance theory does not explain the post-dialytic small molecule rebound.
    Heaf JG; Jensen SB; Jensen K; Ali S; von Jessen F
    Scand J Urol Nephrol; 1998 Sep; 32(5):350-5. PubMed ID: 9825399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method for the calculation of dialysis Kt factor as a quantitative measure of removal efficiency of uremic retention solutes: Applicability to high-dialysate vs low-dialysate volume technologies.
    Colussi G; Brunati CCM; Gervasi F; Montoli A; Vergani D; Curci F; Minetti E
    PLoS One; 2020; 15(5):e0233331. PubMed ID: 32469929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytic solution of the Variable-Volume Double-Pool urea kinetics model applied to parameter estimation in hemodialysis.
    Grandi F; Avanzolini G; Cappello A
    Comput Biol Med; 1995 Nov; 25(6):505-18. PubMed ID: 8665796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modeling of solute kinetics and body fluid changes during profiled hemodialysis.
    Ursino M; Colì L; Brighenti C; De Pascalis A; Chiari L; Dalmastri V; La Manna G; Mosconi G; Avanzolini G; Stefoni S
    Int J Artif Organs; 1999 Feb; 22(2):94-107. PubMed ID: 10212044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-steadiness approximation for the two-compartment solute kinetic model.
    Koike J; Ujiie K; Owada A; Shiigai T; Matsui N; Nonoguchi H; Tomita K; Marumo F
    Kidney Int; 1997 Sep; 52(3):821-31. PubMed ID: 9291205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of intradialytic solute and fluid kinetics. Setting Up a predictive mathematical model.
    Colì L; Ursino M; De Pascalis A; Brighenti C; Dalmastri V; La Manna G; Isola E; Cianciolo G; Patrono D; Boni P; Stefoni S
    Blood Purif; 2000; 18(1):37-49. PubMed ID: 10686441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic behavior of urea is different from that of other water-soluble compounds: the case of the guanidino compounds.
    Eloot S; Torremans A; De Smet R; Marescau B; De Wachter D; De Deyn PP; Lameire N; Verdonck P; Vanholder R
    Kidney Int; 2005 Apr; 67(4):1566-75. PubMed ID: 15780113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solute disequilibrium and multicompartment modeling.
    Kaufman AM; Schneditz D; Smye S; Polaschegg HD; Levin NW
    Adv Ren Replace Ther; 1995 Oct; 2(4):319-29. PubMed ID: 8591123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urea, creatinine and phosphate kinetic modeling during dialysis: application to pediatric hemodialysis.
    Maasrani M; Jaffrin MY; Fischbach M; Boudailliez B
    Int J Artif Organs; 1995 Mar; 18(3):122-9. PubMed ID: 7499014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of hemodialysis modeling.
    Ziółko M; Pietrzyk JA; Grabska-Chrzastowska J
    Kidney Int; 2000 Mar; 57(3):1152-63. PubMed ID: 10720967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion kinetics of urea, creatinine and uric acid in blood during hemodialysis. Clinical implications.
    Descombes E; Perriard F; Fellay G
    Clin Nephrol; 1993 Nov; 40(5):286-95. PubMed ID: 8281718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical analysis of a two-compartment model of urea kinetics.
    Smye SW; Will EJ
    Phys Med Biol; 1995 Dec; 40(12):2005-14. PubMed ID: 8719941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective diffusion volume flow rates (Qe) for urea, creatinine, and inorganic phosphorous (Qeu, Qecr, QeiP) during hemodialysis.
    Gotch FA; Panlilio F; Sergeyeva O; Rosales L; Folden T; Kaysen G; Levin N
    Semin Dial; 2003; 16(6):474-6. PubMed ID: 14629609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of parameters in a two-pool urea kinetic model for hemodialysis.
    Burgelman M; Vanholder R; Fostier H; Ringoir S
    Med Eng Phys; 1997 Jan; 19(1):69-76. PubMed ID: 9140875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.