BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 24308365)

  • 1. A multi-level multi-scale approach to study essential genes in Mycobacterium tuberculosis.
    Ghosh S; Baloni P; Mukherjee S; Anand P; Chandra N
    BMC Syst Biol; 2013 Dec; 7():132. PubMed ID: 24308365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a subtractive genomics approach for in silico identification and characterization of novel drug targets in Mycobacterium tuberculosis F11.
    Hosen MI; Tanmoy AM; Mahbuba DA; Salma U; Nazim M; Islam MT; Akhteruzzaman S
    Interdiscip Sci; 2014 Mar; 6(1):48-56. PubMed ID: 24464704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive essentiality analysis of the
    Levendosky K; Janisch N; Quadri LEN
    mBio; 2023 Aug; 14(4):e0057323. PubMed ID: 37350613
    [No Abstract]   [Full Text] [Related]  

  • 4. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis.
    Raman K; Yeturu K; Chandra N
    BMC Syst Biol; 2008 Dec; 2():109. PubMed ID: 19099550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets.
    Rienksma RA; Suarez-Diez M; Spina L; Schaap PJ; Martins dos Santos VA
    Semin Immunol; 2014 Dec; 26(6):610-22. PubMed ID: 25453232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inference of protein function and protein linkages in Mycobacterium tuberculosis based on prokaryotic genome organization: a combined computational approach.
    Strong M; Mallick P; Pellegrini M; Thompson MJ; Eisenberg D
    Genome Biol; 2003; 4(9):R59. PubMed ID: 12952538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways.
    Minato Y; Gohl DM; Thiede JM; Chacón JM; Harcombe WR; Maruyama F; Baughn AD
    mSystems; 2019 Jun; 4(4):. PubMed ID: 31239393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural annotation of Mycobacterium tuberculosis proteome.
    Anand P; Sankaran S; Mukherjee S; Yeturu K; Laskowski R; Bhardwaj A; Bhagavat R; ; Brahmachari SK; Chandra N
    PLoS One; 2011; 6(10):e27044. PubMed ID: 22073123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput screen of essential gene modules in Mycobacterium tuberculosis: a bibliometric approach.
    Xu G; Liu B; Wang F; Wei C; Zhang Y; Sheng J; Wang G; Li F
    BMC Infect Dis; 2013 May; 13():227. PubMed ID: 23687949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of Mycobacteria 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, an essential enzyme, provides a platform for drug discovery.
    Buetow L; Brown AC; Parish T; Hunter WN
    BMC Struct Biol; 2007 Oct; 7():68. PubMed ID: 17956607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UniDrug-target: a computational tool to identify unique drug targets in pathogenic bacteria.
    Chanumolu SK; Rout C; Chauhan RS
    PLoS One; 2012; 7(3):e32833. PubMed ID: 22431985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying essential genes in bacterial metabolic networks with machine learning methods.
    Plaimas K; Eils R; König R
    BMC Syst Biol; 2010 May; 4():56. PubMed ID: 20438628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genome-wide structure-based survey of nucleotide binding proteins in M. tuberculosis.
    Bhagavat R; Kim HB; Kim CY; Terwilliger TC; Mehta D; Srinivasan N; Chandra N
    Sci Rep; 2017 Oct; 7(1):12489. PubMed ID: 28970579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis.
    Mészáros B; Tóth J; Vértessy BG; Dosztányi Z; Simon I
    PLoS Comput Biol; 2011 Jul; 7(7):e1002118. PubMed ID: 21814507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis.
    Fang X; Wallqvist A; Reifman J
    BMC Syst Biol; 2010 Nov; 4():160. PubMed ID: 21092312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinformatic and mutational studies of related toxin-antitoxin pairs in
    Tandon H; Sharma A; Wadhwa S; Varadarajan R; Singh R; Srinivasan N; Sandhya S
    J Biol Chem; 2019 Jun; 294(23):9048-9063. PubMed ID: 31018964
    [No Abstract]   [Full Text] [Related]  

  • 17. Visualization and interpretation of protein networks in Mycobacterium tuberculosis based on hierarchical clustering of genome-wide functional linkage maps.
    Strong M; Graeber TG; Beeby M; Pellegrini M; Thompson MJ; Yeates TO; Eisenberg D
    Nucleic Acids Res; 2003 Dec; 31(24):7099-109. PubMed ID: 14654685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T-iDT : tool for identification of drug target in bacteria and validation by Mycobacterium tuberculosis.
    Singh NK; Selvam SM; Chakravarthy P
    In Silico Biol; 2006; 6(6):485-93. PubMed ID: 17518759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
    Zhou H; Rezaei J; Hugo W; Gao S; Jin J; Fan M; Yong CH; Wozniak M; Wong L
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S6. PubMed ID: 24564941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural genomics of highly conserved microbial genes of unknown function in search of new antibacterial targets.
    Abergel C; Coutard B; Byrne D; Chenivesse S; Claude JB; Deregnaucourt C; Fricaux T; Gianesini-Boutreux C; Jeudy S; Lebrun R; Maza C; Notredame C; Poirot O; Suhre K; Varagnol M; Claverie JM
    J Struct Funct Genomics; 2003; 4(2-3):141-57. PubMed ID: 14649299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.