These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 24308430)
21. Penium margaritaceum: A Unicellular Model Organism for Studying Plant Cell Wall Architecture and Dynamics. Domozych DS Plants (Basel); 2014 Nov; 3(4):543-58. PubMed ID: 27135519 [TBL] [Abstract][Full Text] [Related]
22. The structure and biochemistry of charophycean cell walls: I. Pectins of Penium margaritaceum. Domozych DS; Serfis A; Kiemle SN; Gretz MR Protoplasma; 2007; 230(1-2):99-115. PubMed ID: 17111095 [TBL] [Abstract][Full Text] [Related]
23. Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. Zhong B; Xi Z; Goremykin VV; Fong R; McLenachan PA; Novis PM; Davis CC; Penny D Mol Biol Evol; 2014 Jan; 31(1):177-83. PubMed ID: 24136916 [TBL] [Abstract][Full Text] [Related]
24. The multifunctional roles of the extracellular matrix in the sessile life of the zygnematophyte Penium margaritaceum: stick, glide and cluster. LoRicco JG; Sun L; Bauer L; Sgambettera G; Epstein R; Bagdan K; Winegrad A; Palacio-Lopez K; Hao P; Sørensen I; Bacic A; Rose JKC; Doblin MS; Domozych DS Physiol Plant; 2024; 176(5):e14520. PubMed ID: 39351613 [TBL] [Abstract][Full Text] [Related]
25. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants. van Baren MJ; Bachy C; Reistetter EN; Purvine SO; Grimwood J; Sudek S; Yu H; Poirier C; Deerinck TJ; Kuo A; Grigoriev IV; Wong CH; Smith RD; Callister SJ; Wei CL; Schmutz J; Worden AZ BMC Genomics; 2016 Mar; 17():267. PubMed ID: 27029936 [TBL] [Abstract][Full Text] [Related]
26. Snow ball earth and the split of Streptophyta and Chlorophyta. Becker B Trends Plant Sci; 2013 Apr; 18(4):180-3. PubMed ID: 23102566 [TBL] [Abstract][Full Text] [Related]
27. Zygnematophyceae: from living algae collections to the establishment of future models. Zhou H; von Schwartzenberg K J Exp Bot; 2020 Jun; 71(11):3296-3304. PubMed ID: 32076703 [TBL] [Abstract][Full Text] [Related]
28. Into the deep: new discoveries at the base of the green plant phylogeny. Leliaert F; Verbruggen H; Zechman FW Bioessays; 2011 Sep; 33(9):683-92. PubMed ID: 21744372 [TBL] [Abstract][Full Text] [Related]
29. Modulation of the cellulose content of tuber cell walls by antisense expression of different potato (Solanum tuberosum L.) CesA clones. Oomen RJ; Tzitzikas EN; Bakx EJ; Straatman-Engelen I; Bush MS; McCann MC; Schols HA; Visser RG; Vincken JP Phytochemistry; 2004 Mar; 65(5):535-46. PubMed ID: 15003416 [TBL] [Abstract][Full Text] [Related]
30. Genome-wide analysis of carbohydrate-active enzymes in Pyramimonas parkeae (Prasinophyceae). Satjarak A; Graham LE J Phycol; 2017 Oct; 53(5):1072-1086. PubMed ID: 28708263 [TBL] [Abstract][Full Text] [Related]
31. PlantOrDB: a genome-wide ortholog database for land plants and green algae. Li L; Ji G; Ye C; Shu C; Zhang J; Liang C BMC Plant Biol; 2015 Jun; 15():161. PubMed ID: 26112452 [TBL] [Abstract][Full Text] [Related]
32. Evolution of xyloglucan-related genes in green plants. Del Bem LE; Vincentz MG BMC Evol Biol; 2010 Nov; 10():341. PubMed ID: 21054875 [TBL] [Abstract][Full Text] [Related]
33. Electroporation-based delivery of proteins in Penium margaritaceum and other zygnematophycean algae. Carrillo-Carrasco VP; Hernández-García J; Weijers D Physiol Plant; 2023; 175(6):e14121. PubMed ID: 38148204 [TBL] [Abstract][Full Text] [Related]
34. The GapA/B gene duplication marks the origin of Streptophyta (charophytes and land plants). Petersen J; Teich R; Becker B; Cerff R; Brinkmann H Mol Biol Evol; 2006 Jun; 23(6):1109-18. PubMed ID: 16527864 [TBL] [Abstract][Full Text] [Related]
35. The closest living relatives of land plants. Karol KG; McCourt RM; Cimino MT; Delwiche CF Science; 2001 Dec; 294(5550):2351-3. PubMed ID: 11743201 [TBL] [Abstract][Full Text] [Related]
36. Evolutionary and immune-activating character analyses of NLR genes in algae suggest the ancient origin of plant intracellular immune receptors. Feng XY; Li Q; Liu Y; Zhang YM; Shao ZQ Plant J; 2024 Sep; 119(5):2316-2330. PubMed ID: 38972042 [TBL] [Abstract][Full Text] [Related]
37. Using chemical genomics to study cell wall formation and cell growth in Arabidopsis thaliana and Penium margaritaceum. Worden N; Esteve VE; Domozych DS; Drakakaki G Methods Mol Biol; 2015; 1242():23-39. PubMed ID: 25408440 [TBL] [Abstract][Full Text] [Related]
38. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Farrokhi N; Burton RA; Brownfield L; Hrmova M; Wilson SM; Bacic A; Fincher GB Plant Biotechnol J; 2006 Mar; 4(2):145-67. PubMed ID: 17177793 [TBL] [Abstract][Full Text] [Related]
39. Structural evolution of the 4/1 genes and proteins in non-vascular and lower vascular plants. Morozov SY; Milyutina IA; Bobrova VK; Ryazantsev DY; Erokhina TN; Zavriev SK; Agranovsky AA; Solovyev AG; Troitsky AV Biochimie; 2015 Dec; 119():125-36. PubMed ID: 26542289 [TBL] [Abstract][Full Text] [Related]
40. Charophyte algae and land plant origins. McCourt RM; Delwiche CF; Karol KG Trends Ecol Evol; 2004 Dec; 19(12):661-6. PubMed ID: 16701329 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]