These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 24309015)

  • 1. In vitro models of tumor vessels and matrix: engineering approaches to investigate transport limitations and drug delivery in cancer.
    Seo BR; DelNero P; Fischbach C
    Adv Drug Deliv Rev; 2014 Apr; 69-70():205-216. PubMed ID: 24309015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The critical role of vascular endothelial growth factor in tumor angiogenesis.
    Amini A; Masoumi Moghaddam S; Morris DL; Pourgholami MH
    Curr Cancer Drug Targets; 2012 Jan; 12(1):23-43. PubMed ID: 22111836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reengineering the Tumor Vasculature: Improving Drug Delivery and Efficacy.
    Stylianopoulos T; Munn LL; Jain RK
    Trends Cancer; 2018 Apr; 4(4):258-259. PubMed ID: 29606306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro.
    Tan ML; Ling L; Fischbach C
    Adv Drug Deliv Rev; 2021 Sep; 176():113852. PubMed ID: 34197895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-engineered three-dimensional tumor models to study tumor angiogenesis.
    Verbridge SS; Chandler EM; Fischbach C
    Tissue Eng Part A; 2010 Jul; 16(7):2147-52. PubMed ID: 20214471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-engineered 3D tumor angiogenesis models: potential technologies for anti-cancer drug discovery.
    Chwalek K; Bray LJ; Werner C
    Adv Drug Deliv Rev; 2014 Dec; 79-80():30-9. PubMed ID: 24819220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix.
    Carnemolla B; Borsi L; Balza E; Castellani P; Meazza R; Berndt A; Ferrini S; Kosmehl H; Neri D; Zardi L
    Blood; 2002 Mar; 99(5):1659-65. PubMed ID: 11861281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pericyte-targeting drug delivery and tissue engineering.
    Kang E; Shin JW
    Int J Nanomedicine; 2016; 11():2397-406. PubMed ID: 27313454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting tumor stroma and exploiting mature tumor vasculature to improve anti-cancer drug delivery.
    Bouzin C; Feron O
    Drug Resist Updat; 2007 Jun; 10(3):109-20. PubMed ID: 17452119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microengineered tumor models: insights & opportunities from a physical sciences-oncology perspective.
    DelNero P; Song YH; Fischbach C
    Biomed Microdevices; 2013 Aug; 15(4):583-593. PubMed ID: 23559404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiogenesis inhibitors. Drug selectivity and target specificity.
    Kesisis G; Broxterman H; Giaccone G
    Curr Pharm Des; 2007; 13(27):2795-809. PubMed ID: 17897024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restriction of drug transport by the tumor environment.
    Nandigama R; Upcin B; Aktas BH; Ergün S; Henke E
    Histochem Cell Biol; 2018 Dec; 150(6):631-648. PubMed ID: 30361778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip.
    Han B; Qu C; Park K; Konieczny SF; Korc M
    Cancer Lett; 2016 Sep; 380(1):319-29. PubMed ID: 26688098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies.
    Chauhan VP; Stylianopoulos T; Boucher Y; Jain RK
    Annu Rev Chem Biomol Eng; 2011; 2():281-98. PubMed ID: 22432620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity of tumor endothelial cells and drug delivery.
    Hida K; Maishi N; Sakurai Y; Hida Y; Harashima H
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt B):140-147. PubMed ID: 26626622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering approaches for investigating tumor angiogenesis: exploiting the role of the extracellular matrix.
    Hielscher AC; Gerecht S
    Cancer Res; 2012 Dec; 72(23):6089-96. PubMed ID: 23172313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting breast cancer through its microenvironment: current status of preclinical and clinical research in finding relevant targets.
    Nienhuis HH; Gaykema SB; Timmer-Bosscha H; Jalving M; Brouwers AH; Lub-de Hooge MN; van der Vegt B; Overmoyer B; de Vries EG; Schröder CP
    Pharmacol Ther; 2015 Mar; 147():63-79. PubMed ID: 25444756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities.
    Kirtane AR; Kalscheuer SM; Panyam J
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1731-47. PubMed ID: 24036273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug delivery and transport to solid tumors.
    Jang SH; Wientjes MG; Lu D; Au JL
    Pharm Res; 2003 Sep; 20(9):1337-50. PubMed ID: 14567626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the tumor vascular compartment to improve conventional cancer therapy.
    Feron O
    Trends Pharmacol Sci; 2004 Oct; 25(10):536-42. PubMed ID: 15380938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.