These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 24309262)

  • 21. Effects of sustained cognitive activity on white matter microstructure and cognitive outcomes in healthy middle-aged adults: A systematic review.
    McPhee GM; Downey LA; Stough C
    Ageing Res Rev; 2019 May; 51():35-47. PubMed ID: 30802543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term maintenance of multitasking abilities following video game training in older adults.
    Anguera JA; Schachtner JN; Simon AJ; Volponi J; Javed S; Gallen CL; Gazzaley A
    Neurobiol Aging; 2021 Jul; 103():22-30. PubMed ID: 33789209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The neural bases of proactive and reactive control processes in normal aging.
    Manard M; François S; Phillips C; Salmon E; Collette F
    Behav Brain Res; 2017 Mar; 320():504-516. PubMed ID: 27784627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Schema benefit vs. proactive interference: Contradicting behavioral outcomes and coexisting neural patterns.
    Oren N; Shapira-Lichter I; Lerner Y; Tarrasch R; Hendler T; Giladi N; Ash EL
    Neuroimage; 2017 Sep; 158():271-281. PubMed ID: 28689053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural Plastic Effects of Cognitive Training on Aging Brain.
    Leung NT; Tam HM; Chu LW; Kwok TC; Chan F; Lam LC; Woo J; Lee TM
    Neural Plast; 2015; 2015():535618. PubMed ID: 26417460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmental changes in neural activation and psychophysiological interaction patterns of brain regions associated with interference control and time perception.
    Neufang S; Fink GR; Herpertz-Dahlmann B; Willmes K; Konrad K
    Neuroimage; 2008 Nov; 43(2):399-409. PubMed ID: 18708149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Examining neural plasticity and cognitive benefit through the unique lens of musical training.
    Moreno S; Bidelman GM
    Hear Res; 2014 Feb; 308():84-97. PubMed ID: 24079993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cognitive and neural plasticity in old age: A systematic review of evidence from executive functions cognitive training.
    Nguyen L; Murphy K; Andrews G
    Ageing Res Rev; 2019 Aug; 53():100912. PubMed ID: 31154013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential effects of mind-wandering and visual distraction on age-related changes in neuro-electric brain activity and variability.
    Maillet D; Yu L; Lau B; Chow R; Alain C; Grady CL
    Neuropsychologia; 2020 Sep; 146():107565. PubMed ID: 32707165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cognitive plasticity in older adults: effects of cognitive training and physical exercise.
    Bherer L
    Ann N Y Acad Sci; 2015 Mar; 1337():1-6. PubMed ID: 25773610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unifying framework for cognitive training interventions in brain aging.
    Turnbull A; Seitz A; Tadin D; Lin FV
    Ageing Res Rev; 2022 Nov; 81():101724. PubMed ID: 36031055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aging of the frontal lobe.
    Zanto TP; Gazzaley A
    Handb Clin Neurol; 2019; 163():369-389. PubMed ID: 31590742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modular Brain Network Organization Predicts Response to Cognitive Training in Older Adults.
    Gallen CL; Baniqued PL; Chapman SB; Aslan S; Keebler M; Didehbani N; D'Esposito M
    PLoS One; 2016; 11(12):e0169015. PubMed ID: 28006029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of impaired vision during dual-task walking in young and older adults.
    Krishnan V; Cho YH; Mohamed O
    Gait Posture; 2017 Sep; 57():136-140. PubMed ID: 28624710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuroplasticity and successful cognitive aging: a brief overview for nursing.
    Vance DE; Kaur J; Fazeli PL; Talley MH; Yuen HK; Kitchin B; Lin F
    J Neurosci Nurs; 2012 Aug; 44(4):218-27. PubMed ID: 22743813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cross-modal interference-control is reduced in childhood but maintained in aging: A cohort study of stimulus- and response-interference in cross-modal and unimodal Stroop tasks.
    Hirst RJ; Kicks EC; Allen HA; Cragg L
    J Exp Psychol Hum Percept Perform; 2019 May; 45(5):553-572. PubMed ID: 30945905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of multitasking-training on gray matter structure and resting state neural mechanisms.
    Takeuchi H; Taki Y; Nouchi R; Hashizume H; Sekiguchi A; Kotozaki Y; Nakagawa S; Miyauchi CM; Sassa Y; Kawashima R
    Hum Brain Mapp; 2014 Aug; 35(8):3646-60. PubMed ID: 24343872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuroimaging of an attention demanding dual-task during dynamic postural control.
    Rosso AL; Cenciarini M; Sparto PJ; Loughlin PJ; Furman JM; Huppert TJ
    Gait Posture; 2017 Sep; 57():193-198. PubMed ID: 28662465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial.
    Liu-Ambrose T; Nagamatsu LS; Voss MW; Khan KM; Handy TC
    Neurobiol Aging; 2012 Aug; 33(8):1690-8. PubMed ID: 21741129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How negative affect influences neural control processes underlying the resolution of cognitive interference: an event-related fMRI study.
    Melcher T; Born C; Gruber O
    Neurosci Res; 2011 Aug; 70(4):415-27. PubMed ID: 21620907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.