These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 24309300)

  • 1. Acute exercise facilitates brain function and cognition in children who need it most: an ERP study of individual differences in inhibitory control capacity.
    Drollette ES; Scudder MR; Raine LB; Moore RD; Saliba BJ; Pontifex MB; Hillman CH
    Dev Cogn Neurosci; 2014 Jan; 7():53-64. PubMed ID: 24309300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control.
    Kao SC; Westfall DR; Soneson J; Gurd B; Hillman CH
    Psychophysiology; 2017 Sep; 54(9):1335-1345. PubMed ID: 28480961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic fitness and intra-individual variability of neurocognition in preadolescent children.
    Moore RD; Wu CT; Pontifex MB; O'Leary KC; Scudder MR; Raine LB; Johnson CR; Hillman CH
    Brain Cogn; 2013 Jun; 82(1):43-57. PubMed ID: 23511845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children.
    Hillman CH; Pontifex MB; Raine LB; Castelli DM; Hall EE; Kramer AF
    Neuroscience; 2009 Mar; 159(3):1044-54. PubMed ID: 19356688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children.
    Hillman CH; Buck SM; Themanson JR; Pontifex MB; Castelli DM
    Dev Psychol; 2009 Jan; 45(1):114-29. PubMed ID: 19209995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute effects of intense interval versus aerobic exercise on children's behavioral and neuroelectric measures of inhibitory control.
    Kao SC; Baumgartner N; Noh K; Wang CH; Schmitt S
    J Sci Med Sport; 2023 Jun; 26(6):316-321. PubMed ID: 37277231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beneficial effects of acute high-intensity exercise on electrophysiological indices of attention processes in young adult men.
    Du Rietz E; Barker AR; Michelini G; Rommel AS; Vainieri I; Asherson P; Kuntsi J
    Behav Brain Res; 2019 Feb; 359():474-484. PubMed ID: 30465815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impacts of coordinative exercise on executive function in kindergarten children: an ERP study.
    Chang YK; Tsai YJ; Chen TT; Hung TM
    Exp Brain Res; 2013 Mar; 225(2):187-96. PubMed ID: 23239198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interactive effect of exercise intensity and task difficulty on human cognitive processing.
    Kamijo K; Nishihira Y; Higashiura T; Kuroiwa K
    Int J Psychophysiol; 2007 Aug; 65(2):114-21. PubMed ID: 17482699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of exercise intensity on neurophysiological indices of food-related inhibitory control and cognitive control: A randomized crossover event-related potential (ERP) study.
    Bailey BW; Muir AM; Bartholomew CL; Christensen WF; Carbine KA; Marsh H; LaCouture H; McCutcheon C; Larson MJ
    Neuroimage; 2021 Aug; 237():118162. PubMed ID: 34020012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroelectric indices of goal maintenance following a single bout of physical activity.
    Scudder MR; Drollette ES; Pontifex MB; Hillman CH
    Biol Psychol; 2012 Feb; 89(2):528-31. PubMed ID: 22200656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurophysiological and behavioral correlates of cognitive control during low and moderate intensity exercise.
    Olson RL; Chang YK; Brush CJ; Kwok AN; Gordon VX; Alderman BL
    Neuroimage; 2016 May; 131():171-80. PubMed ID: 26458515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cognitive demand during acute exercise on inhibitory control and its electrophysiological indices: A randomized crossover study.
    Chueh TY; Hung CL; Chang YK; Huang CJ; Hung TM
    Physiol Behav; 2023 Jun; 265():114148. PubMed ID: 36913988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fitness, physical activity, sedentary time, inhibitory control, and neuroelectric activity in children with overweight or obesity: The ActiveBrains project.
    Mora-Gonzalez J; Esteban-Cornejo I; Solis-Urra P; Migueles JH; Cadenas-Sanchez C; Molina-Garcia P; Rodriguez-Ayllon M; Hillman CH; Catena A; Pontifex MB; Ortega FB
    Psychophysiology; 2020 Jun; 57(6):e13579. PubMed ID: 32249933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic fitness and the attentional blink in preadolescent children.
    Wu CT; Hillman CH
    Neuropsychology; 2013 Nov; 27(6):642-53. PubMed ID: 24059445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No Change in Inhibitory Control or P3 Following Different High-Intensity Interval Exercise Modalities.
    Drollette ES; Johnson MN; Meadows CC
    Brain Sci; 2022 Jan; 12(2):. PubMed ID: 35203949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroelectric and behavioral indices of interference control during acute cycling.
    Pontifex MB; Hillman CH
    Clin Neurophysiol; 2007 Mar; 118(3):570-80. PubMed ID: 17095295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute cardiovascular exercise and executive control function.
    Hillman CH; Snook EM; Jerome GJ
    Int J Psychophysiol; 2003 Jun; 48(3):307-14. PubMed ID: 12798990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of exercise intervention on event-related potential and task performance indices of attention networks in children with developmental coordination disorder.
    Tsai CL; Wang CH; Tseng YT
    Brain Cogn; 2012 Jun; 79(1):12-22. PubMed ID: 22387276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute effects of aerobic exercise on conflict suppression, response inhibition, and processing efficiency underlying inhibitory control processes: An ERP and SFT study.
    Kao SC; Baumgartner N; Nagy C; Fu HL; Yang CT; Wang CH
    Psychophysiology; 2022 Aug; 59(8):e14032. PubMed ID: 35199340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.