These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 24309836)

  • 1. Super-resolution imaging of SERS hot spots.
    Willets KA
    Chem Soc Rev; 2014 Jun; 43(11):3854-64. PubMed ID: 24309836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shedding Light on Surface-Enhanced Raman Scattering Hot Spots through Single-Molecule Super-Resolution Imaging.
    Willets KA; Stranahan SM; Weber ML
    J Phys Chem Lett; 2012 May; 3(10):1286-94. PubMed ID: 26286772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution imaging of interactions between molecules and plasmonic nanostructures.
    Willets KA
    Phys Chem Chem Phys; 2013 Apr; 15(15):5345-54. PubMed ID: 23321954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New tools for investigating electromagnetic hot spots in single-molecule surface-enhanced Raman scattering.
    Willets KA
    Chemphyschem; 2013 Oct; 14(14):3186-95. PubMed ID: 23780669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-resolution optical imaging of single-molecule SERS hot spots.
    Stranahan SM; Willets KA
    Nano Lett; 2010 Sep; 10(9):3777-84. PubMed ID: 20718441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super-Resolution Surface-Enhanced Raman Scattering: Perspectives on the Past, Present, and Future.
    Willets KA
    ACS Nano; 2024 Oct; 18(41):27824-27832. PubMed ID: 39353138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-resolution imaging reveals a difference between SERS and luminescence centroids.
    Weber ML; Litz JP; Masiello DJ; Willets KA
    ACS Nano; 2012 Feb; 6(2):1839-48. PubMed ID: 22248484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells.
    Radziuk D; Moehwald H
    Phys Chem Chem Phys; 2015 Sep; 17(33):21072-93. PubMed ID: 25619814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superlocalization surface-enhanced Raman scattering microscopy: comparing point spread function models in the ensemble and single-molecule limits.
    Titus EJ; Willets KA
    ACS Nano; 2013 Sep; 7(9):8284-94. PubMed ID: 23985039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cantilever tip near-field surface-enhanced Raman imaging of tris(bipyridine)ruthenium(II) on silver nanoparticles-coated substrates.
    Jiang Y; Wang A; Ren B; Tian ZQ
    Langmuir; 2008 Oct; 24(20):12054-61. PubMed ID: 18774828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.
    Ertsgaard CT; McKoskey RM; Rich IS; Lindquist NC
    ACS Nano; 2014 Oct; 8(10):10941-6. PubMed ID: 25268457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially Controlled Fabrication of Surface-Enhanced Raman Scattering Hot Spots through Photoinduced Dewetting of Silver Thin Films.
    Choi HK; Park SM; Jeong J; Lee H; Yeon GJ; Kim DS; Kim ZH
    J Phys Chem Lett; 2022 Apr; 13(13):2969-2975. PubMed ID: 35343701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creating, characterizing, and controlling chemistry with SERS hot spots.
    Kleinman SL; Frontiera RR; Henry AI; Dieringer JA; Van Duyne RP
    Phys Chem Chem Phys; 2013 Jan; 15(1):21-36. PubMed ID: 23042160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering.
    Cheng HH; Chen SW; Chang YY; Chu JY; Lin DZ; Chen YP; Li JH
    Opt Express; 2011 Oct; 19(22):22125-41. PubMed ID: 22109056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision synthesis: designing hot spots over hot spots via selective gold deposition on silver octahedra edges.
    Liu Y; Pedireddy S; Lee YH; Hegde RS; Tjiu WW; Cui Y; Ling XY
    Small; 2014 Dec; 10(23):4940-50. PubMed ID: 25048617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.