These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2431011)

  • 21. Ventromedial mesencephalic tegmental (VMT) projections to ten functionally different cortical areas in the cat: topography and quantitative analysis.
    Scheibner T; Törk I
    J Comp Neurol; 1987 May; 259(2):247-65. PubMed ID: 2438316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Afferent projections to the thalamic mediodorsal nucleus in the cat studied by retrograde and anterograde axonal transport of horseradish peroxidase.
    Ono K; Niimi K
    J Hirnforsch; 1986; 27(6):597-610. PubMed ID: 2437179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental sequence in the origin of descending spinal pathways. Studies using retrograde transport techniques in the North American opossum (Didelphis virginiana).
    Cabana T; Martin GF
    Brain Res; 1984 Aug; 317(2):247-63. PubMed ID: 6478250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortical projections to superficial laminae of the dorsal horn and to the ventral horn of the spinal cord in the North American opossum. Studies using the orthograde transport of WGA-HRP.
    Martin GF; Cabana T
    Brain Res; 1985 Jun; 337(1):188-92. PubMed ID: 3839153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of catecholaminergic projections to the spinal cord in the North American opossum, Didelphis virginiana.
    Pindzola RR; Ho RH; Martin GF
    J Comp Neurol; 1990 Apr; 294(3):399-417. PubMed ID: 1971285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The origin of projections from the medullary reticular formation to the spinal cord, the diencephalon and the cerebellum at different stages of development in the North American opossum: studies using single and double labeling techniques.
    Martin GF; Cabana T; Waltzer R
    Neuroscience; 1988 Apr; 25(1):87-96. PubMed ID: 3393288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anatomical connections of the nucleus prepositus of the cat.
    McCrea RA; Baker R
    J Comp Neurol; 1985 Jul; 237(3):377-407. PubMed ID: 2995460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The afferent connections of the substantia innominata in the monkey, Macaca fascicularis.
    Russchen FT; Amaral DG; Price JL
    J Comp Neurol; 1985 Dec; 242(1):1-27. PubMed ID: 3841131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis.
    Russchen FT; Amaral DG; Price JL
    J Comp Neurol; 1987 Feb; 256(2):175-210. PubMed ID: 3549796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spinal cord development in anuran larvae: II. Ascending and descending pathways.
    Forehand CJ; Farel PB
    J Comp Neurol; 1982 Aug; 209(4):395-408. PubMed ID: 6982288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brainstem projections to the rat cuneate nucleus.
    Weinberg RJ; Rustioni A
    J Comp Neurol; 1989 Apr; 282(1):142-56. PubMed ID: 2468698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organization of forebrain projections from the medullary reticular formation in the North American opossum. Evidence for connectional heterogeneity.
    Waltzer R; Martin GF
    Brain Behav Evol; 1988; 31(2):57-81. PubMed ID: 2450621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei.
    Neuhuber WL; Zenker W
    J Comp Neurol; 1989 Feb; 280(2):231-53. PubMed ID: 2466876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Observations on the development of brainstem-spinal systems in the North American oppossum.
    Martin GF; Beals JK; Culberson JL; Dom R; Goode G; Humbertson AO
    J Comp Neurol; 1978 Sep; 181(2):271-89. PubMed ID: 690268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Avian somatosensory system: II. Ascending projections of the dorsal column and external cuneate nuclei in the pigeon.
    Wild JM
    J Comp Neurol; 1989 Sep; 287(1):1-18. PubMed ID: 2794122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons.
    Stanton GB; Goldberg ME; Bruce CJ
    J Comp Neurol; 1988 May; 271(4):493-506. PubMed ID: 2454971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonretinal projections to the medial terminal accessory optic nucleus in rabbit and rat: a retrograde and anterograde transport study.
    Giolli RA; Torigoe Y; Blanks RH
    J Comp Neurol; 1988 Mar; 269(1):73-86. PubMed ID: 3361005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat.
    Cechetto DF; Saper CB
    J Comp Neurol; 1987 Aug; 262(1):27-45. PubMed ID: 2442207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The origins of cholinergic and other subcortical afferents to the thalamus in the rat.
    Hallanger AE; Levey AI; Lee HJ; Rye DB; Wainer BH
    J Comp Neurol; 1987 Aug; 262(1):105-24. PubMed ID: 2442206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural associations of the substantia innominata in the rat: afferent connections.
    Grove EA
    J Comp Neurol; 1988 Nov; 277(3):315-46. PubMed ID: 2461972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.