These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24310180)

  • 41. Magnetic helical micromachines.
    Peyer KE; Tottori S; Qiu F; Zhang L; Nelson BJ
    Chemistry; 2013 Jan; 19(1):28-38. PubMed ID: 23203403
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Directed self-assembly of nanoparticles for nanomotors.
    Dong B; Zhou T; Zhang H; Li CY
    ACS Nano; 2013 Jun; 7(6):5192-8. PubMed ID: 23647410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.
    Cheng R; Meng F; Deng C; Klok HA; Zhong Z
    Biomaterials; 2013 May; 34(14):3647-57. PubMed ID: 23415642
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow.
    Alapan Y; Bozuyuk U; Erkoc P; Karacakol AC; Sitti M
    Sci Robot; 2020 May; 5(42):. PubMed ID: 33022624
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields.
    Ahmed S; Wang W; Mair LO; Fraleigh RD; Li S; Castro LA; Hoyos M; Huang TJ; Mallouk TE
    Langmuir; 2013 Dec; 29(52):16113-8. PubMed ID: 24345038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of superparamagnetic nanoparticle interactions with extracellular matrix in an in vitro system.
    Kuhn SJ; Hallahan DE; Giorgio TD
    Ann Biomed Eng; 2006 Jan; 34(1):51-8. PubMed ID: 16477503
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility.
    Suter M; Zhang L; Siringil EC; Peters C; Luehmann T; Ergeneman O; Peyer KE; Nelson BJ; Hierold C
    Biomed Microdevices; 2013 Dec; 15(6):997-1003. PubMed ID: 23846247
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment.
    Kilianová M; Prucek R; Filip J; Kolařík J; Kvítek L; Panáček A; Tuček J; Zbořil R
    Chemosphere; 2013 Nov; 93(11):2690-7. PubMed ID: 24054133
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polymer thin films embedded with in situ grown metal nanoparticles.
    Ramesh GV; Porel S; Radhakrishnan TP
    Chem Soc Rev; 2009 Sep; 38(9):2646-56. PubMed ID: 19690744
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemically powered micro- and nanomotors.
    Sánchez S; Soler L; Katuri J
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1414-44. PubMed ID: 25504117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Shaping functional nano-objects by 3D confined supramolecular assembly.
    Deng R; Liang F; Li W; Liu S; Liang R; Cai M; Yang Z; Zhu J
    Small; 2013 Dec; 9(24):4099-103. PubMed ID: 23554338
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Asymmetric hybrid silica nanomotors for capture and cargo transport: towards a novel motion-based DNA sensor.
    Simmchen J; Baeza A; Ruiz D; Esplandiu MJ; Vallet-Regí M
    Small; 2012 Jul; 8(13):2053-9. PubMed ID: 22511610
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel degradable polymeric carrier for selective release and imaging of magnetic nanoparticles.
    Chen D; Li N; Gu H; Xia X; Xu Q; Ge J; Lu J; Li Y
    Chem Commun (Camb); 2010 Sep; 46(36):6708-10. PubMed ID: 20714558
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water.
    Deng J; Shao Y; Gao N; Tan C; Zhou S; Hu X
    J Hazard Mater; 2013 Nov; 262():836-44. PubMed ID: 24140535
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel nonenzymatic hydrogen peroxide sensor based on iron oxide-silver hybrid submicrospheres.
    Liu Z; Zhao B; Shi Y; Guo C; Yang H; Li Z
    Talanta; 2010 Jun; 81(4-5):1650-4. PubMed ID: 20441953
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia.
    Kim DH; Kim KN; Kim KM; Lee YK
    J Biomed Mater Res A; 2009 Jan; 88(1):1-11. PubMed ID: 18257079
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin.
    Li L; He X; Chen L; Zhang Y
    Chem Asian J; 2009 Feb; 4(2):286-93. PubMed ID: 19040251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strategy for the assembly of carbon nanotube-metal nanoparticle hybrids using biointerfaces.
    Kim SN; Slocik JM; Naik RR
    Small; 2010 Sep; 6(18):1992-5. PubMed ID: 20721951
    [No Abstract]   [Full Text] [Related]  

  • 59. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria.
    Fan Z; Senapati D; Khan SA; Singh AK; Hamme A; Yust B; Sardar D; Ray PC
    Chemistry; 2013 Feb; 19(8):2839-47. PubMed ID: 23296491
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrochemical preparation and delivery of melanin-iron covered gold nanoparticles.
    Grumelli D; Vericat C; Benítez G; Ramallo-López JM; Giovanetti L; Requejo F; Moreno MS; Orive AG; Creus AH; Salvarezza RC
    Chemphyschem; 2009 Feb; 10(2):370-3. PubMed ID: 19072961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.