These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 24310252)

  • 1. Possible involvement of ΔNp63 downregulation in the invasion and metastasis of oral squamous cell carcinoma via induction of a mesenchymal phenotype.
    Goto Y; Kawano S; Matsubara R; Kiyosue T; Hirano M; Jinno T; Maruse Y; Toyoshima T; Kitamura R; Tanaka H; Oobu K; Nakamura S
    Clin Exp Metastasis; 2014 Mar; 31(3):293-306. PubMed ID: 24310252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-suppressive roles of ΔNp63β-miR-205 axis in epithelial-mesenchymal transition of oral squamous cell carcinoma via targeting ZEB1 and ZEB2.
    Hashiguchi Y; Kawano S; Goto Y; Yasuda K; Kaneko N; Sakamoto T; Matsubara R; Jinno T; Maruse Y; Tanaka H; Morioka M; Hattori T; Tanaka S; Kiyoshima T; Nakamura S
    J Cell Physiol; 2018 Oct; 233(10):6565-6577. PubMed ID: 29150940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential roles of kallikrein-related peptidase 6 in malignant transformation and ΔNp63β-mediated epithelial-mesenchymal transition of oral squamous cell carcinoma.
    Kaneko N; Kawano S; Yasuda K; Hashiguchi Y; Sakamoto T; Matsubara R; Goto Y; Jinno T; Maruse Y; Morioka M; Hattori T; Tanaka S; Tanaka H; Kiyoshima T; Nakamura S
    Oral Oncol; 2017 Dec; 75():148-157. PubMed ID: 29224812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical roles of Wnt5a-Ror2 signaling in aggressiveness of tongue squamous cell carcinoma and production of matrix metalloproteinase-2 via ΔNp63β-mediated epithelial-mesenchymal transition.
    Sakamoto T; Kawano S; Matsubara R; Goto Y; Jinno T; Maruse Y; Kaneko N; Hashiguchi Y; Hattori T; Tanaka S; Kitamura R; Kiyoshima T; Nakamura S
    Oral Oncol; 2017 Jun; 69():15-25. PubMed ID: 28559016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miR-146a promotes proliferation, invasion, and epithelial-to-mesenchymal transition in oral squamous carcinoma cells.
    Wang F; Ye LJ; Wang FJ; Liu HF; Wang XL
    Environ Toxicol; 2020 Oct; 35(10):1050-1057. PubMed ID: 32469461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carcinoma.
    Hu Y; He MY; Zhu LF; Yang CC; Zhou ML; Wang Q; Zhang W; Zheng YY; Wang DM; Xu ZQ; Wu YN; Liu LK
    J Exp Clin Cancer Res; 2016 Jan; 35():12. PubMed ID: 26769084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pituitary tumor-transforming gene 1 (PTTG1) is overexpressed in oral squamous cell carcinoma (OSCC) and promotes migration, invasion and epithelial-mesenchymal transition (EMT) in SCC15 cells.
    Zhang E; Liu S; Xu Z; Huang S; Tan X; Sun C; Lu L
    Tumour Biol; 2014 Sep; 35(9):8801-11. PubMed ID: 24879625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bovine lactoferrin reverses programming of epithelial-to-mesenchymal transition to mesenchymal-to-epithelial transition in oral squamous cell carcinoma.
    Chea C; Miyauchi M; Inubushi T; Okamoto K; Haing S; Nguyen PT; Imanaka H; Takata T
    Biochem Biophys Res Commun; 2018 Dec; 507(1-4):142-147. PubMed ID: 30415774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-myc downstream-regulated gene 1 downregulates cell proliferation, invasiveness, and tumorigenesis in human oral squamous cell carcinoma.
    Lee JC; Chung LC; Chen YJ; Feng TH; Juang HH
    Cancer Lett; 2014 Dec; 355(2):242-52. PubMed ID: 25218595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells.
    Hong KO; Kim JH; Hong JS; Yoon HJ; Lee JI; Hong SP; Hong SD
    J Exp Clin Cancer Res; 2009 Feb; 28(1):28. PubMed ID: 19243631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of SIRT1 in regulation of epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis.
    Chen IC; Chiang WF; Huang HH; Chen PF; Shen YY; Chiang HC
    Mol Cancer; 2014 Nov; 13():254. PubMed ID: 25424420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenchymal-epithelial transition in lymph node metastases of oral squamous cell carcinoma is accompanied by ZEB1 expression.
    Horny K; Sproll C; Peiffer L; Furtmann F; Gerhardt P; Gravemeyer J; Stoecklein NH; Spassova I; Becker JC
    J Transl Med; 2023 Apr; 21(1):267. PubMed ID: 37076857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming growth factor-β1 activates ΔNp63/c-Myc to promote oral squamous cell carcinoma.
    Hu L; Liu J; Li Z; Wang C; Nawshad A
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2016 Oct; 122(4):460-482.e4. PubMed ID: 27567435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of epithelial-mesenchymal transition markers at the invasive front of oral squamous cell carcinoma.
    Costa LC; Leite CF; Cardoso SV; Loyola AM; Faria PR; Souza PE; Horta MC
    J Appl Oral Sci; 2015; 23(2):169-78. PubMed ID: 26018309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Expression of Tyrosine Kinase Receptor 2 in Oral Squamous Cell Carcinoma and the Effect on Cell Proliferation and Migration and Epithelial-Mesenchymal Transition Process].
    Zheng M; Huang Y; Fei W; Shen Y; Nie X; Gao MY
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2023 Mar; 54(2):342-349. PubMed ID: 36949696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-155-5p is associated with oral squamous cell carcinoma metastasis and poor prognosis.
    Baba O; Hasegawa S; Nagai H; Uchida F; Yamatoji M; Kanno NI; Yamagata K; Sakai S; Yanagawa T; Bukawa H
    J Oral Pathol Med; 2016 Apr; 45(4):248-55. PubMed ID: 26307116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Vimentin Expression Associated with Lymph Node Metastasis and Predicated a Poor Prognosis in Oral Squamous Cell Carcinoma.
    Liu S; Liu L; Ye W; Ye D; Wang T; Guo W; Liao Y; Xu D; Song H; Zhang L; Zhu H; Deng J; Zhang Z
    Sci Rep; 2016 Dec; 6():38834. PubMed ID: 27966589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AURKA contributes to the progression of oral squamous cell carcinoma (OSCC) through modulating epithelial-to-mesenchymal transition (EMT) and apoptosis via the regulation of ROS.
    Dawei H; Honggang D; Qian W
    Biochem Biophys Res Commun; 2018 Dec; 507(1-4):83-90. PubMed ID: 30454901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between ΔNp63 and miR-138-5p regulates growth, metastasis and stemness of oral squamous cell carcinoma.
    Zhuang Z; Xie N; Hu J; Yu P; Wang C; Hu X; Han X; Hou J; Huang H; Liu X
    Oncotarget; 2017 Mar; 8(13):21954-21973. PubMed ID: 28423539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis.
    Li C; Li Q; Cai Y; He Y; Lan X; Wang W; Liu J; Wang S; Zhu G; Fan J; Zhou Y; Sun R
    Cancer Gene Ther; 2016 Sep; 23(9):295-302. PubMed ID: 27492854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.