These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24310514)

  • 1. Progress in cellular engineering of plants: biochemical and genetic assessment of selectable markers from cultured cells.
    Negrutiu I; Jacobs M; Cattoir-Reynaerts A
    Plant Mol Biol; 1984 Sep; 3(5):289-302. PubMed ID: 24310514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectable Markers for Use in Genetic Manipulation of Extensively Drug-Resistant (XDR)
    Luna BM; Ulhaq A; Yan J; Pantapalangkoor P; Nielsen TB; Davies BW; Actis LA; Spellberg B
    mSphere; 2017; 2(2):. PubMed ID: 28497114
    [No Abstract]   [Full Text] [Related]  

  • 3. Advances in selectable marker genes for plant transformation.
    Sundar IK; Sakthivel N
    J Plant Physiol; 2008 Nov; 165(16):1698-716. PubMed ID: 18789557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in development of marker-free transgenic plants: regulation and biosafety concern.
    Tuteja N; Verma S; Sahoo RK; Raveendar S; Reddy IN
    J Biosci; 2012 Mar; 37(1):167-97. PubMed ID: 22357214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances of selectable marker genes in plastid genetic engineering.
    He Y; Luo A; Mu LS; Chen Q; Zhang Y; Yeh KW; Tian ZH
    Yi Chuan; 2017 Sep; 39(9):810-827. PubMed ID: 28936979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene transfer and gene mapping in mammalian cells in culture.
    Shows TB; Sakaguchi AY
    In Vitro; 1980 Jan; 16(1):55-76. PubMed ID: 6245032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection.
    Daniell H; Muthukumar B; Lee SB
    Curr Genet; 2001 Apr; 39(2):109-16. PubMed ID: 11405095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant protoplasts as genetic tool: selectable markers for developmental studies.
    Negrutiu I; Hinnisdaels S; Cammaerts D; Cherdshewasart W; Gharti-Chhetri G; Jacobs M
    Int J Dev Biol; 1992 Mar; 36(1):73-84. PubMed ID: 1627478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic engineering of the multicellular green alga Volvox: a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker.
    Hallmann A; Rappel A
    Plant J; 1999 Jan; 17(1):99-109. PubMed ID: 10069071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination.
    Bala A; Roy A; Das A; Chakraborti D; Das S
    BMC Biotechnol; 2013 Oct; 13():88. PubMed ID: 24144281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii.
    Sandoval-Vargas JM; Jiménez-Clemente LA; Macedo-Osorio KS; Oliver-Salvador MC; Fernández-Linares LC; Durán-Figueroa NV; Badillo-Corona JA
    Mol Biotechnol; 2019 Jun; 61(6):461-468. PubMed ID: 30997667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in somatic cell genetics of higher plants - the protoplast approach in basic studies on mutagenesis and isolation of biochemical mutants.
    Negrutiu I; Jacobs M; Caboche M
    Theor Appl Genet; 1984 Feb; 67(4):289-304. PubMed ID: 24258649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GM maize from site-specific recombination technology, what next?
    Ow DW
    Curr Opin Biotechnol; 2007 Apr; 18(2):115-20. PubMed ID: 17353124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The elimination of a selectable marker gene in the doubled haploid progeny of co-transformed barley plants.
    Kapusi E; Hensel G; Coronado MJ; Broeders S; Marthe C; Otto I; Kumlehn J
    Plant Mol Biol; 2013 Jan; 81(1-2):149-60. PubMed ID: 23180016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-transformation using a negative selectable marker gene for the production of selectable marker gene-free transgenic plants.
    Park J; Lee YK; Kang BK; Chung WI
    Theor Appl Genet; 2004 Nov; 109(8):1562-7. PubMed ID: 15448898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of rye (Secale cereale L.) plants with low transgene copy number after biolistic gene transfer and production of instantly marker-free transgenic rye.
    Popelka JC; Xu J; Altpeter F
    Transgenic Res; 2003 Oct; 12(5):587-96. PubMed ID: 14601657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Advances in the Study on Marker Genes in transgenic Plants.].
    Yang YJ; Zhou P
    Yi Chuan; 2005 May; 27(3):499-504. PubMed ID: 15985421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants.
    Zhang W; Subbarao S; Addae P; Shen A; Armstrong C; Peschke V; Gilbertson L
    Theor Appl Genet; 2003 Nov; 107(7):1157-68. PubMed ID: 14513214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically engineering plants for crop improvement.
    Gasser CS; Fraley RT
    Science; 1989 Jun; 244(4910):1293-9. PubMed ID: 17820660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.