BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24310897)

  • 1. Regulation of adenylate levels in intact spinach chloroplasts.
    Kobayashi Y; Inoue Y; Furuya F; Shibata K; Heber U
    Planta; 1979 Oct; 147(1):69-75. PubMed ID: 24310897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and hydrolysis of ATP by intact chloroplasts under flash illumination and in darkness.
    Inoue Y; Kobayashi Y; Shibata K; Heber U
    Biochim Biophys Acta; 1978 Oct; 504(1):142-52. PubMed ID: 30476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexibility of coupling and stoichiometry of ATP formation in intact chloroplasts.
    Heber U; Kirk MR
    Biochim Biophys Acta; 1975 Jan; 376(1):136-50. PubMed ID: 164902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coregulation of electron transport and Benson-Calvin cycle activity in isolated spinach chloroplasts: studies on glycerate 3-phosphate reduction.
    Foyer CH; Furbank RT; Walker DA
    Arch Biochem Biophys; 1989 Feb; 268(2):687-97. PubMed ID: 2913953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenylate Levels, Energy Charge, and Phosphorylation Potential during Dark-Light and Light-Dark Transition in Chloroplasts, Mitochondria, and Cytosol of Mesophyll Protoplasts from Avena sativa L.
    Hampp R; Goller M; Ziegler H
    Plant Physiol; 1982 Feb; 69(2):448-55. PubMed ID: 16662227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of adenosine phosphates and magnesium on photosynthesis in chloroplasts from peas, sedum, and spinach.
    Piazza GJ; Gibbs M
    Plant Physiol; 1983 Mar; 71(3):680-7. PubMed ID: 16662888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of bound adenosine triphosphate from bound adenosine diphosphate by the purified coupling factor 1 of chloroplasts. Evidence for direct involvement of the coupling factor in this "adenylate kinase-like" reaction.
    Moudrianakis EN; Tiefert MA
    J Biol Chem; 1976 Dec; 251(24):7796-801. PubMed ID: 12178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake and reduction of glycerate by isolated chloroplasts.
    Heber U; Kirk MR; Gimmler H; Schäfer G
    Planta; 1974 Jan; 120(1):31-46. PubMed ID: 24442616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Level of photosynthetic intermediates in isolated spinach chloroplasts.
    Latzko E; Gibbs M
    Plant Physiol; 1969 Mar; 44(3):396-402. PubMed ID: 16657074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of ATP requirement for light stimulation of glycerate transport into intact isolated chloroplasts.
    Robinson SP
    Plant Physiol; 1984 Jun; 75(2):425-30. PubMed ID: 16663638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthesis in a reconstituted chloroplast system from spinach. Some factors affecting CO2-dependent oxygen evolution with fructose-1,6-bisphosphate as substrate.
    Walker DA; Slabas AR; Fitzgerald MP
    Biochim Biophys Acta; 1976 Jul; 440(1):147-62. PubMed ID: 7321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of glycerate on photosynthesis by wheat chloroplasts.
    Edwards GE; Walker DA
    Arch Biochem Biophys; 1984 May; 231(1):124-35. PubMed ID: 6326672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy charge, phosphorylation potential and proton motive force in chloroplasts.
    Giersch C; Heber U; Kobayashi Y; Inoue Y; Shibata K; Heldt HW
    Biochim Biophys Acta; 1980 Mar; 590(1):59-73. PubMed ID: 7356995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of 3-phosphoglycerate reduction in isolated chloroplasts by the concentrations of ATP, ADP and 3-phosphoglycerate.
    Robinson SP; Walker DA
    Biochim Biophys Acta; 1979 Mar; 545(3):528-36. PubMed ID: 427144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO2 reduction by intact chloroplasts under a diminished proton gradient.
    Tillberg JE; Giersch C; Heber U
    Biochim Biophys Acta; 1977 Jul; 461(1):31-47. PubMed ID: 18173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of electron flow in intact chloroplasts by the intrathylakoid pH, not by the phosphorylation potential.
    Kobayashi Y; Inoue Y; Shibata K; Heber U
    Planta; 1979 Sep; 146(4):481-6. PubMed ID: 24318257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenine Nucleotide Levels, the Redox State of the NADP System, and Assimilatory Force in Nonaqueously Purified Mesophyll Chloroplasts from Maize Leaves under Different Light Intensities.
    Usuda H
    Plant Physiol; 1988 Dec; 88(4):1461-8. PubMed ID: 16666481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes in adenosine phosphates and energy charge in chloroplastic and nonchloroplastic compartments of wheat leaves (author's transl)].
    Sellami A
    Biochim Biophys Acta; 1976 Mar; 423(3):524-39. PubMed ID: 1259957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed light studies on photosynthetic energy conversion. VIII. Evidence from millisecond emission of chloroplasts for two adenylate binding sites on membrane-bound coupling factor, CF1.
    Vambutas V; Bertsch W
    Biochim Biophys Acta; 1975 Jan; 376(1):169-79. PubMed ID: 235980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of adenylate kinase-governed equilibrium of adenylates on contents of free magnesium in plant cells and compartments.
    Igamberdiev AU; Kleczkowski LA
    Biochem J; 2001 Nov; 360(Pt 1):225-31. PubMed ID: 11696011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.