These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 24310918)

  • 41. Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis.
    Hosokawa K; Sato K; Ichikawa N; Maeda M
    Lab Chip; 2004 Jun; 4(3):181-5. PubMed ID: 15159775
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication improvements for thermoset polyester (TPE) microfluidic devices.
    Fiorini GS; Yim M; Jeffries GD; Schiro PG; Mutch SA; Lorenz RM; Chiu DT
    Lab Chip; 2007 Jul; 7(7):923-6. PubMed ID: 17594014
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation.
    Dong J; Liang D; Yang X; Sun C
    Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acoustofluidics 11: Affinity specific extraction and sample decomplexing using continuous flow acoustophoresis.
    Augustsson P; Laurell T
    Lab Chip; 2012 Apr; 12(10):1742-52. PubMed ID: 22465997
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PDMS-film coated on PCB for AC impedance sensing of biological cells.
    Guo J; Li CM; Kang Y
    Biomed Microdevices; 2014 Oct; 16(5):681-6. PubMed ID: 24850232
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Particle manipulation in a microfluidic channel using acoustic trap.
    Jeong JS; Lee JW; Lee CY; Teh SY; Lee A; Shung KK
    Biomed Microdevices; 2011 Aug; 13(4):779-88. PubMed ID: 21603963
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization.
    Ko SH; Song YA; Kim SJ; Kim M; Han J; Kang KH
    Lab Chip; 2012 Nov; 12(21):4472-82. PubMed ID: 22907316
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Field-effect flow control in a polydimethylsiloxane-based microfluidic system.
    Buch JS; Wang PC; DeVoe DL; Lee CS
    Electrophoresis; 2001 Oct; 22(18):3902-7. PubMed ID: 11700719
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thin film piezoelectrics for bulk acoustic wave (BAW) acoustophoresis.
    Reichert P; Deshmukh D; Lebovitz L; Dual J
    Lab Chip; 2018 Dec; 18(23):3655-3667. PubMed ID: 30374500
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays.
    Pla-Roca M; Juncker D
    Methods Mol Biol; 2011; 671():177-94. PubMed ID: 20967630
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controlling flow in microfluidic channels with a manually actuated pin valve.
    Brett ME; Zhao S; Stoia JL; Eddington DT
    Biomed Microdevices; 2011 Aug; 13(4):633-9. PubMed ID: 21472409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contactless dielectrophoresis: a new technique for cell manipulation.
    Shafiee H; Caldwell JL; Sano MB; Davalos RV
    Biomed Microdevices; 2009 Oct; 11(5):997-1006. PubMed ID: 19415498
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane).
    Weibel DB; Siegel AC; Lee A; George AH; Whitesides GM
    Lab Chip; 2007 Dec; 7(12):1832-6. PubMed ID: 18030408
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Low-power microfluidic electro-hydraulic pump (EHP).
    Lui C; Stelick S; Cady N; Batt C
    Lab Chip; 2010 Jan; 10(1):74-9. PubMed ID: 20024053
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface modification of poly(dimethylsiloxane) microfluidic devices and its application in simultaneous analysis of uric acid and ascorbic acid in human urine.
    Liang RP; Gan GH; Qiu JD
    J Sep Sci; 2008 Aug; 31(15):2860-7. PubMed ID: 18655017
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile fabrication of a rigid and chemically resistant micromixer system from photocurable inorganic polymer by static liquid photolithography (SLP).
    Fang Q; Kim DP; Li X; Yoon TH; Li Y
    Lab Chip; 2011 Aug; 11(16):2779-84. PubMed ID: 21713287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.