These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model. Suh HS; Lee WH; Kim TS Phys Med Biol; 2012 Nov; 57(21):6961-80. PubMed ID: 23044667 [TBL] [Abstract][Full Text] [Related]
3. A guideline for head volume conductor modeling in EEG and MEG. Vorwerk J; Cho JH; Rampp S; Hamer H; Knösche TR; Wolters CH Neuroimage; 2014 Oct; 100():590-607. PubMed ID: 24971512 [TBL] [Abstract][Full Text] [Related]
4. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. Wolters CH; Anwander A; Tricoche X; Weinstein D; Koch MA; MacLeod RS Neuroimage; 2006 Apr; 30(3):813-26. PubMed ID: 16364662 [TBL] [Abstract][Full Text] [Related]
5. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. Rampersad SM; Janssen AM; Lucka F; Aydin Ü; Lanfer B; Lew S; Wolters CH; Stegeman DF; Oostendorp TF IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):441-52. PubMed ID: 24760939 [TBL] [Abstract][Full Text] [Related]
6. Methods for high-resolution anisotropic finite element modeling of the human head: automatic MR white matter anisotropy-adaptive mesh generation. Lee WH; Kim TS Med Eng Phys; 2012 Jan; 34(1):85-98. PubMed ID: 21820347 [TBL] [Abstract][Full Text] [Related]
7. Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS. Shahid S; Wen P; Ahfock T Comput Methods Programs Biomed; 2013 Jan; 109(1):48-64. PubMed ID: 23040278 [TBL] [Abstract][Full Text] [Related]
8. Transcranial direct current stimulation (tDCS) in a realistic head model. Sadleir RJ; Vannorsdall TD; Schretlen DJ; Gordon B Neuroimage; 2010 Jul; 51(4):1310-8. PubMed ID: 20350607 [TBL] [Abstract][Full Text] [Related]
9. Diffusion tensor MRI-based estimation of the influence of brain tissue anisotropy on the effects of transcranial magnetic stimulation. De Lucia M; Parker GJ; Embleton K; Newton JM; Walsh V Neuroimage; 2007 Jul; 36(4):1159-70. PubMed ID: 17524673 [TBL] [Abstract][Full Text] [Related]
10. Changing head model extent affects finite element predictions of transcranial direct current stimulation distributions. Indahlastari A; Chauhan M; Schwartz B; Sadleir RJ J Neural Eng; 2016 Dec; 13(6):066006. PubMed ID: 27705955 [TBL] [Abstract][Full Text] [Related]
11. Modeling transcranial DC stimulation. Oostendorp TF; Hengeveld YA; Wolters CH; Stinstra J; van Elswijk G; Stegeman DF Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4226-9. PubMed ID: 19163645 [TBL] [Abstract][Full Text] [Related]
12. Determinants of the electric field during transcranial direct current stimulation. Opitz A; Paulus W; Will S; Antunes A; Thielscher A Neuroimage; 2015 Apr; 109():140-50. PubMed ID: 25613437 [TBL] [Abstract][Full Text] [Related]
13. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art. Nielsen JD; Madsen KH; Puonti O; Siebner HR; Bauer C; Madsen CG; Saturnino GB; Thielscher A Neuroimage; 2018 Jul; 174():587-598. PubMed ID: 29518567 [TBL] [Abstract][Full Text] [Related]
14. Electric field and current density distribution in an anatomical head model during transcranial direct current stimulation for tinnitus treatment. Parazzini M; Fiocchi S; Ravazzani P Bioelectromagnetics; 2012 Sep; 33(6):476-87. PubMed ID: 22298345 [TBL] [Abstract][Full Text] [Related]
15. Multiscale coupling of transcranial direct current stimulation to neuron electrodynamics: modeling the influence of the transcranial electric field on neuronal depolarization. Dougherty ET; Turner JC; Vogel F Comput Math Methods Med; 2014; 2014():360179. PubMed ID: 25404950 [TBL] [Abstract][Full Text] [Related]
16. Electric field distribution in a finite-volume head model of deep brain stimulation. Grant PF; Lowery MM Med Eng Phys; 2009 Nov; 31(9):1095-103. PubMed ID: 19656716 [TBL] [Abstract][Full Text] [Related]
17. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Thielscher A; Opitz A; Windhoff M Neuroimage; 2011 Jan; 54(1):234-43. PubMed ID: 20682353 [TBL] [Abstract][Full Text] [Related]
18. The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation. Shahid SS; Bikson M; Salman H; Wen P; Ahfock T J Neural Eng; 2014 Jun; 11(3):036002. PubMed ID: 24737098 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling. Im CH; Park JH; Shim M; Chang WH; Kim YH Phys Med Biol; 2012 Apr; 57(8):2137-50. PubMed ID: 22452936 [TBL] [Abstract][Full Text] [Related]
20. Determination of optimal electrode positions for transcranial direct current stimulation (tDCS). Im CH; Jung HH; Choi JD; Lee SY; Jung KY Phys Med Biol; 2008 Jun; 53(11):N219-25. PubMed ID: 18490807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]