These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24311169)

  • 41. Role of calcium in the polar secretion of indoleacetic Acid.
    Dela Fuente RK
    Plant Physiol; 1984 Oct; 76(2):342-6. PubMed ID: 16663844
    [TBL] [Abstract][Full Text] [Related]  

  • 42. K+ channels of stomatal guard cells: bimodal control of the K+ inward-rectifier evoked by auxin.
    Blatt MR; Thiel G
    Plant J; 1994 Jan; 5(1):55-68. PubMed ID: 8130798
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation.
    Kutschera U; Wang ZY
    Protoplasma; 2016 Jan; 253(1):3-14. PubMed ID: 25772679
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential downward stream of auxin synthesized at the tip has a key role in gravitropic curvature via TIR1/AFBs-mediated auxin signaling pathways.
    Nishimura T; Nakano H; Hayashi K; Niwa C; Koshiba T
    Plant Cell Physiol; 2009 Nov; 50(11):1874-85. PubMed ID: 19897572
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of 2,4-dinitrophenol and chemical modifying reagents on auxin transport by suspension-cultured crown gall cells.
    Rubery PH
    Planta; 1979 Jan; 144(2):173-8. PubMed ID: 24408690
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of K+ and Ca2+ on the indole-3-acetic acid- and fusicoccin-induced growth and membrane potential in maize coleoptile cells.
    Siemieniuk A; Karcz W
    AoB Plants; 2015 Jun; 7():. PubMed ID: 26134122
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nature of cell-to-cell transfer of auxin in polar transport.
    Cande WZ; Ray PM
    Planta; 1976 Jan; 129(1):43-52. PubMed ID: 24430814
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Indoleacetic-acid-enhanced chloride uptake into coleoptile cells.
    Rubinstein B; Light EN
    Planta; 1973 Mar; 110(1):43-56. PubMed ID: 24474310
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells.
    Delbarre A; Muller P; Imhoff V; Guern J
    Planta; 1996 Apr; 198(4):532-541. PubMed ID: 28321663
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The lateral transport of IAA in intact coleoptiles of Avena sativa L. and Zea mays L. during geotropic stimulation.
    Shaw S; Gardner G; Wilkins MB
    Planta; 1973 Jun; 115(2):97-111. PubMed ID: 24458860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time-dependent Changes in the Auxin Sensitivity of Coleoptile Segments: Apparent Sensory Adaptation.
    Vesper MJ; Evans ML
    Plant Physiol; 1978 Feb; 61(2):204-8. PubMed ID: 16660260
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Auxin transport in roots : VII. Uptake and movement of radioactivity from IAA-(14)C by Zea roots.
    Wilkins MB; Cane AR; McCorquodale I
    Planta; 1972 Jun; 105(2):93-113. PubMed ID: 24477751
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energetics of the response of maize coleoptile tissue to indoleacetic acid : Characterization by flow calorimetry as a function of time, IAA concentration, and pH.
    Anderson PC; Lovrien RE; Brenner ML
    Planta; 1981 May; 151(6):499-505. PubMed ID: 24302200
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transport of Indole-3-Acetic Acid during Gravitropism in Intact Maize Coleoptiles.
    Parker KE; Briggs WR
    Plant Physiol; 1990 Dec; 94(4):1763-9. PubMed ID: 16667914
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Can lateral redistribution of auxin account for phototropism of maize coleoptiles?
    Baskin TI; Briggs WR; Iino M
    Plant Physiol; 1986 May; 81(1):306-9. PubMed ID: 16664796
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid auxin- and fusicoccin-enhanced Rb(+) uptake and malate synthesis in Avena coleoptile sections.
    Stout RG; Johnson KD; Rayle DL
    Planta; 1978 Jan; 139(1):35-41. PubMed ID: 24414103
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis.
    Kubeš M; Yang H; Richter GL; Cheng Y; Młodzińska E; Wang X; Blakeslee JJ; Carraro N; Petrášek J; Zažímalová E; Hoyerová K; Peer WA; Murphy AS
    Plant J; 2012 Feb; 69(4):640-54. PubMed ID: 21992190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Comparative Study of Carrier Participation in the Transport of 2,3,5-triiodobenzoic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid by Cucurbita pepo L. Hypocotyl Segments.
    Depta H; Rubery PH
    J Plant Physiol; 1984 Aug; 115(5):371-87. PubMed ID: 23194793
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H(+)-ATPase.
    Hager A; Debus G; Edel HG; Stransky H; Serrano R
    Planta; 1991 Nov; 185(4):527-37. PubMed ID: 24186531
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrogen ion dependence of carrier-mediated auxin uptake by suspension-cultured crown gall cells.
    Rubery PH
    Planta; 1978 Jan; 142(2):203-6. PubMed ID: 24408103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.