These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24311199)

  • 1. Multivariate genetic analyses in heterogeneous populations.
    Lubke G; McArtor D
    Behav Genet; 2014 May; 44(3):232-9. PubMed ID: 24311199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiparametric Allelic Tests for Mapping Multiple Phenotypes: Binomial Regression and Mahalanobis Distance.
    Majumdar A; Witte JS; Ghosh S
    Genet Epidemiol; 2015 Dec; 39(8):635-50. PubMed ID: 26493781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies.
    van der Sluis S; Posthuma D; Dolan CV
    PLoS Genet; 2013; 9(1):e1003235. PubMed ID: 23359524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fast Method for Estimating Statistical Power of Multivariate GWAS in Real Case Scenarios: Examples from the Field of Imaging Genetics.
    Couvy-Duchesne B; Strike LT; McMahon KL; de Zubicaray GI; Thompson PM; Martin NG; Medland SE; Wright MJ
    Behav Genet; 2019 Jan; 49(1):112-121. PubMed ID: 30443694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyze multivariate phenotypes in genetic association studies by combining univariate association tests.
    Yang Q; Wu H; Guo CY; Fox CS
    Genet Epidemiol; 2010 Jul; 34(5):444-54. PubMed ID: 20583287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of gene-gene and gene-environment interactions and its implications for targeting environmental interventions by genotype.
    Wallace HM
    Theor Biol Med Model; 2006 Oct; 3():35. PubMed ID: 17029623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models.
    Sul JH; Bilow M; Yang WY; Kostem E; Furlotte N; He D; Eskin E
    PLoS Genet; 2016 Mar; 12(3):e1005849. PubMed ID: 26943367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes.
    Mägi R; Suleimanov YV; Clarke GM; Kaakinen M; Fischer K; Prokopenko I; Morris AP
    BMC Bioinformatics; 2017 Jan; 18(1):25. PubMed ID: 28077070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel association test for multiple secondary phenotypes from a case-control GWAS.
    Ray D; Basu S
    Genet Epidemiol; 2017 Jul; 41(5):413-426. PubMed ID: 28393390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Augmented Classical Twin Design: Incorporating Genome-Wide Identity by Descent Sharing Into Twin Studies in Order to Model Violations of the Equal Environments Assumption.
    Hwang LD; Mitchell BL; Medland SE; Martin NG; Neale MC; Evans DM
    Behav Genet; 2021 May; 51(3):223-236. PubMed ID: 33582897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating Modifying Effect of Age on Genetic and Environmental Variance Components in Twin Models.
    He L; Sillanpää MJ; Silventoinen K; Kaprio J; Pitkäniemi J
    Genetics; 2016 Apr; 202(4):1313-28. PubMed ID: 26868768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient genome-wide association test for multivariate phenotypes based on the Fisher combination function.
    Yang JJ; Li J; Williams LK; Buu A
    BMC Bioinformatics; 2016 Jan; 17():19. PubMed ID: 26729364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing systematic genotype by environment interactions using item level data.
    Molenaar D; Dolan CV
    Behav Genet; 2014 May; 44(3):212-31. PubMed ID: 24563263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivariate simulation framework reveals performance of multi-trait GWAS methods.
    Porter HF; O'Reilly PF
    Sci Rep; 2017 Mar; 7():38837. PubMed ID: 28287610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A univariate perspective of multivariate genome-wide association analysis.
    Guo X; Zhu J; Fan Q; He M; Wang X; Zhang H
    Genet Epidemiol; 2018 Jul; 42(5):470-479. PubMed ID: 29781551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid gene-based genome-wide association test with multivariate traits.
    Basu S; Zhang Y; Ray D; Miller MB; Iacono WG; McGue M
    Hum Hered; 2013; 76(2):53-63. PubMed ID: 24247328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alcohol Dependence Genetics: Lessons Learned From Genome-Wide Association Studies (GWAS) and Post-GWAS Analyses.
    Hart AB; Kranzler HR
    Alcohol Clin Exp Res; 2015 Aug; 39(8):1312-27. PubMed ID: 26110981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for meta-analysis of multiple traits using GWAS summary statistics.
    Ray D; Boehnke M
    Genet Epidemiol; 2018 Mar; 42(2):134-145. PubMed ID: 29226385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian multivariate reanalysis of large genetic studies identifies many new associations.
    Turchin MC; Stephens M
    PLoS Genet; 2019 Oct; 15(10):e1008431. PubMed ID: 31596850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel insights into autoimmune liver diseases provided by genome-wide association studies.
    Mells GF; Kaser A; Karlsen TH
    J Autoimmun; 2013 Oct; 46():41-54. PubMed ID: 23931959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.