These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24311270)

  • 1. Topographical features of the membrane of Poterioochromonas malhamensis after colchicine and osmotic treatment.
    Robinson DG; Quader H
    Planta; 1980 Feb; 148(1):84-8. PubMed ID: 24311270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flagellar microtubule dynamics in Chlamydomonas: cytochalasin D induces periods of microtubule shortening and elongation; and colchicine induces disassembly of the distal, but not proximal, half of the flagellum.
    Dentler WL; Adams C
    J Cell Biol; 1992 Jun; 117(6):1289-98. PubMed ID: 1607390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Nutritional Mode on the Physiological and Biochemical Characteristics of the Mixotrophic Flagellate
    Ma M; Wei C; Chen M; Wang H; Gong Y; Hu Q
    Microorganisms; 2022 Apr; 10(5):. PubMed ID: 35630297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and feeding characteristics of the mixotrophic flagellate Poterioochromonas malhamensis, a microalgal predator isolated from planting water of Pontederia cordata.
    Yan H; Li Q; Chen B; Shi M; Zhang T
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40599-40611. PubMed ID: 35084678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light affects picocyanobacterial grazing and growth response of the mixotrophic flagellate Poterioochromonas malhamensis.
    Weisse T; Moser M
    J Microbiol; 2020 Apr; 58(4):268-278. PubMed ID: 31989545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the toxic effects of tetraethyl lead and its derivatives on the chrysophyte Poterioochromonas malhamensis. VI. Effects on lorica formation, mitosis, and cytokinesis.
    Röderer G
    Environ Res; 1986 Feb; 39(1):205-31. PubMed ID: 3002779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective fucoxanthin production in the flagellate alga
    Jin H; Guo Y; Li Y; Chen B; Ma H; Wang H; Wang L; Yuan D
    Front Bioeng Biotechnol; 2022; 10():1074850. PubMed ID: 36532577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in intramembrane components of Trypanosoma brucei from intact and x-irradiated rats: a freeze-cleave study.
    Hogan JC; Patton CL
    J Protozool; 1976 May; 23(2):205-15. PubMed ID: 933076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-cell-density cultivation of the flagellate alga Poterioochromonas malhamensis for biomanufacturing the water-soluble β-1,3-glucan with multiple biological activities.
    Ma M; Li Y; Chen J; Wang F; Yuan L; Li Y; Zhang B; Ye D; Han D; Jin H; Hu Q
    Bioresour Technol; 2021 Oct; 337():125447. PubMed ID: 34186327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of α-galactosidase in osmotic regulation of Poterioochromonas malhamensis.
    Kreuzer HP; Kauss H
    Planta; 1980 Feb; 147(5):435-8. PubMed ID: 24311165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of ;Vacuoplasts' from Poterioochromonas malhamensis.
    Jochem P; Thomson KS; Schwab D
    Plant Physiol; 1983 Oct; 73(2):418-21. PubMed ID: 16663231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramembrane organization of synapses in the lobster stretch receptor organ.
    Schaeffer SF
    J Neurocytol; 1984 Jun; 13(3):351-68. PubMed ID: 6481403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors Affecting the Mixotrophic Flagellate Poterioochromonas malhamensis Grazing on Chlorella Cells.
    Wei C; Wang H; Ma M; Hu Q; Gong Y
    J Eukaryot Microbiol; 2020 Mar; 67(2):190-202. PubMed ID: 31674079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the contractile vacuole of Poterioochromonas malhamensis Peterfi. II. Antimonate stains the contractile vacuole of Poterioochromonas.
    Quader H; van Kempen R; Stelzer R; Robinson DG
    Eur J Cell Biol; 1983 May; 30(2):283-7. PubMed ID: 11596504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic membrane domains in photoreceptors of chick retina: a thin-section and a freeze-fracture study.
    Cooper NG; McLaughlin BJ; Boykins LG
    J Ultrastruct Res; 1983 Feb; 82(2):172-88. PubMed ID: 6402603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of cortical microtubule arrays in plant cells.
    Hardham AR; Gunning BE
    J Cell Biol; 1978 Apr; 77(1):14-34. PubMed ID: 350889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete chloroplast genome of the mixotrophic chrysophyte
    Gastineau R; Yilmaz E; Solak CN; Lemieux C; Turmel M; Witkowski A
    Mitochondrial DNA B Resour; 2021; 6(9):2719-2721. PubMed ID: 34471690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary structures of membrane fracture faces obtained by ultrahigh vacuum freeze-fracturing at -196 degrees C and digital image processing.
    Kübler O; Gross H; Moor H
    Ultramicroscopy; 1978; 3(2):161-8. PubMed ID: 358525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The outcome of competition between the two chrysomonads Ochromonas sp. and Poterioochromonas malhamensis depends on pH.
    Moser M; Weisse T
    Eur J Protistol; 2011 May; 47(2):79-85. PubMed ID: 21334865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. REORGANIZATION OF INTERPHASE MICROTUBULES IN ROOT CELLS OF MEDICAGO SATIVA L. DURING ACCLIMATION TO OSMOTIC AND SALT STRESS CONDITION.
    Lazareva EM; Baranova EN; Smirnova EA
    Tsitologiia; 2017; 59(1):34-44. PubMed ID: 30188101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.