BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24311291)

  • 1. A mechanistic study of the spontaneous hydrolysis of glycylserine as the simplest model for protein self-cleavage.
    Mihaylov TT; Parac-Vogt TN; Pierloot K
    Chemistry; 2014 Jan; 20(2):456-66. PubMed ID: 24311291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of the glycylserine hydrolysis at physiological pH: a zwitterionic versus anionic mechanism.
    Mihaylov TT; Parac-Vogt TN; Pierloot K
    Org Biomol Chem; 2014 Mar; 12(9):1395-404. PubMed ID: 24430931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: a theoretical study.
    Yao Y; Li ZS
    Org Biomol Chem; 2012 Sep; 10(35):7037-44. PubMed ID: 22847490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction pathways and free energy barriers for alkaline hydrolysis of insecticide 2-trimethylammonioethyl methylphosphonofluoridate and related organophosphorus compounds: electrostatic and steric effects.
    Xiong Y; Zhan CG
    J Org Chem; 2004 Nov; 69(24):8451-8. PubMed ID: 15549820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein autoproteolysis: conformational strain linked to the rate of peptide cleavage by the pH dependence of the N --> O acyl shift reaction.
    Johansson DG; Wallin G; Sandberg A; Macao B; Aqvist J; Härd T
    J Am Chem Soc; 2009 Jul; 131(27):9475-7. PubMed ID: 19534521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolytic activity of vanadate toward serine-containing peptides studied by kinetic experiments and DFT theory.
    Ho PH; Mihaylov T; Pierloot K; Parac-Vogt TN
    Inorg Chem; 2012 Aug; 51(16):8848-59. PubMed ID: 22845736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of serine-containing peptides at neutral pH promoted by [MoO4]2- oxyanion.
    Ho PH; Stroobants K; Parac-Vogt TN
    Inorg Chem; 2011 Dec; 50(23):12025-33. PubMed ID: 22040112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SEA domain autoproteolysis accelerated by conformational strain: energetic aspects.
    Sandberg A; Johansson DG; Macao B; Härd T
    J Mol Biol; 2008 Apr; 377(4):1117-29. PubMed ID: 18308334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational preferences of N-methoxycarbonyl proline dipeptide.
    Kang YK; Kang NS
    J Comput Chem; 2009 May; 30(7):1116-27. PubMed ID: 18988252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of the neutral hydrolysis of hydrogen isocyanate in aqueous solution via assisted-concerted mechanisms.
    Tolosa Arroyo S; Hidalgo Garcia A; Sansón Martín JA
    J Phys Chem A; 2009 Mar; 113(9):1858-63. PubMed ID: 19209882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of the acid-promoted hydrolysis of oxazolin-5-one: a microhydration model.
    Zeng Y; Xue Y; Yan G
    J Phys Chem B; 2008 Aug; 112(34):10659-67. PubMed ID: 18680333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the reaction mechanisms of the amide hydrolysis in an N-(o-carboxybenzoyl)-L-amino acid.
    Wu Z; Ban F; Boyd RJ
    J Am Chem Soc; 2003 Jun; 125(23):6994-7000. PubMed ID: 12783553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies on the hydrolysis mechanism of N-(2-oxo-1,2-dihydro-pyrimidinyl) formamide.
    Wu Y; Xue Y; Xie DQ; Kim CK; Yan GS
    J Phys Chem B; 2007 Mar; 111(9):2357-64. PubMed ID: 17295531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT study of the mechanisms of in water Au(I)-catalyzed tandem [3,3]-rearrangement/Nazarov reaction/[1,2]-hydrogen shift of enynyl acetates: a proton-transport catalysis strategy in the water-catalyzed [1,2]-hydrogen shift.
    Shi FQ; Li X; Xia Y; Zhang L; Yu ZX
    J Am Chem Soc; 2007 Dec; 129(50):15503-12. PubMed ID: 18027935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical studies of the transition-state structures and free energy barriers for base-catalyzed hydrolysis of amides.
    Xiong Y; Zhan CG
    J Phys Chem A; 2006 Nov; 110(46):12644-52. PubMed ID: 17107116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis of the E2P phosphoenzyme of the Ca(2+)-ATPase: a theoretical study.
    Rudbeck ME; Blomberg MR; Barth A
    J Phys Chem B; 2013 Aug; 117(31):9224-32. PubMed ID: 23889518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of noncovalent interactions in deprotonated peptides: structural and energetic competition between aggregation and hydration.
    Liu D; Wyttenbach T; Carpenter CJ; Bowers MT
    J Am Chem Soc; 2004 Mar; 126(10):3261-70. PubMed ID: 15012157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dianionic phosphorane intermediate and transition states in an associative A(N)+D(N) mechanism for the ribonucleaseA hydrolysis reaction.
    Elsässer B; Valiev M; Weare JH
    J Am Chem Soc; 2009 Mar; 131(11):3869-71. PubMed ID: 19245210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.