BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24311406)

  • 1. Hydrogen-bonding in aminocatalysis: from proline and beyond.
    Albrecht L; Jiang H; Jørgensen KA
    Chemistry; 2014 Jan; 20(2):358-68. PubMed ID: 24311406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5-(pyrrolidin-2-yl)-1H-tetrazole and 5-[(pyrrolidin-2-yl)methyl]-1H-tetrazole: proline surrogates with increased potential in asymmetric catalysis.
    Limbach M
    Chem Biodivers; 2006 Feb; 3(2):119-33. PubMed ID: 17193251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic one-pot three-component catalytic asymmetric transformation by combination of hydrogen-bond-donating and amine catalysts.
    Lin S; Deiana L; Zhao GL; Sun J; Córdova A
    Angew Chem Int Ed Engl; 2011 Aug; 50(33):7624-30. PubMed ID: 21710513
    [No Abstract]   [Full Text] [Related]  

  • 4. Kinetic resolution of sec-alcohols using a new class of readily assembled (S)-proline-derived 4-(pyrrolidino)-pyridine analogues.
    Dálaigh CO; Hynes SJ; Maher DJ; Connon SJ
    Org Biomol Chem; 2005 Mar; 3(6):981-4. PubMed ID: 15750639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Michael reaction of aldehydes with β-nitroalkenes catalyzed by pyrrolidine-camphor derived organocatalysts bearing hydrogen-bond donors.
    Weng J; Ai HB; Luo RS; Lu G
    Chirality; 2012 Apr; 24(4):271-5. PubMed ID: 22278901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rational approach towards a new ferrocenyl pyrrolidine for stereoselective enamine catalysis.
    Petruzziello D; Stenta M; Mazzanti A; Cozzi PG
    Chemistry; 2013 Jun; 19(24):7696-700. PubMed ID: 23649888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of proline-derived dipeptides and their catalytic enantioselective direct aldol reactions: catalyst, solvent, additive and temperature effects.
    Chen YH; Sung PH; Sung K
    Amino Acids; 2010 Mar; 38(3):839-45. PubMed ID: 19370392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly enantioselective epoxidation of styrenes catalyzed by proline-derived C1-symmetric titanium(salan) complexes.
    Matsumoto K; Oguma T; Katsuki T
    Angew Chem Int Ed Engl; 2009; 48(40):7432-5. PubMed ID: 19722245
    [No Abstract]   [Full Text] [Related]  

  • 10. Computational study on the pKa shifts in proline induced by hydrogen-bond-donating cocatalysts.
    Xue XS; Yang C; Li X; Cheng JP
    J Org Chem; 2014 Feb; 79(3):1166-73. PubMed ID: 24410451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic enantioselective 1,3-dipolar cycloaddition reaction of azomethine ylides and alkenes: the direct strategy to prepare enantioenriched highly substituted proline derivatives.
    Nájera C; Sansano JM
    Angew Chem Int Ed Engl; 2005 Oct; 44(39):6272-6. PubMed ID: 16172996
    [No Abstract]   [Full Text] [Related]  

  • 12. Refined transition-state models for proline-catalyzed asymmetric Michael reactions under basic and base-free conditions.
    Sharma AK; Sunoj RB
    J Org Chem; 2012 Dec; 77(23):10516-24. PubMed ID: 23186327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic asymmetric Michael reactions of acetaldehyde.
    García-García P; Ladépêche A; Halder R; List B
    Angew Chem Int Ed Engl; 2008; 47(25):4719-21. PubMed ID: 18442029
    [No Abstract]   [Full Text] [Related]  

  • 14. Chirally functionalized hollow nanospheres containing L-prolinamide: synthesis and asymmetric catalysis.
    Gao J; Liu J; Tang J; Jiang D; Li B; Yang Q
    Chemistry; 2010 Jul; 16(26):7852-8. PubMed ID: 20509127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric organocatalytic direct aldol reactions of ketones with alpha-keto acids and their application to the synthesis of 2-hydroxy-gamma-butyrolactones.
    Xu XY; Tang Z; Wang YZ; Luo SW; Cun LF; Gong LZ
    J Org Chem; 2007 Dec; 72(26):9905-13. PubMed ID: 18004868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diastereoselective synthesis of 4,5'-bis-proline compounds via reductive dimerization of N-acyloxyiminium ions.
    Zanardi F; Sartori A; Curti C; Battistini L; Rassu G; Nicastro G; Casiraghi G
    J Org Chem; 2007 Mar; 72(5):1814-7. PubMed ID: 17263582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry. The simplest "enzyme".
    Movassaghi M; Jacobsen EN
    Science; 2002 Dec; 298(5600):1904-5. PubMed ID: 12471240
    [No Abstract]   [Full Text] [Related]  

  • 18. The design of novel N-4'-pyridinyl-alpha-methyl proline derivatives as potent catalysts for the kinetic resolution of alcohols.
    Priem G; Pelotier B; Macdonald SJ; Anson MS; Campbell IB
    J Org Chem; 2003 May; 68(10):3844-8. PubMed ID: 12737562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-(2-Nitrophenyl)proline: an intramolecular hydrogen bond forming reagent for the determination of the absolute configuration of primary amines.
    Ahn HC; Choi K
    Org Lett; 2007 Sep; 9(19):3853-5. PubMed ID: 17711292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and experimental investigation of the energetics of cis-trans proline isomerization in peptide models.
    Schroeder OE; Carper E; Wind JJ; Poutsma JL; Etzkorn FA; Poutsma JC
    J Phys Chem A; 2006 May; 110(20):6522-30. PubMed ID: 16706410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.