These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24311563)

  • 1. Structure-based model for light-harvesting properties of nucleic acid nanostructures.
    Pan K; Boulais E; Yang L; Bathe M
    Nucleic Acids Res; 2014 Feb; 42(4):2159-70. PubMed ID: 24311563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Exciton Dynamics with Synthetic DNA Scaffolds.
    Hart SM; Gorman J; Bathe M; Schlau-Cohen GS
    Acc Chem Res; 2023 Aug; 56(15):2051-2061. PubMed ID: 37345736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating DNA Photonic Wires into Light-Harvesting Supramolecular Polymers.
    Kownacki M; Langenegger SM; Liu SX; Häner R
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):751-755. PubMed ID: 30353636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform.
    Nicoli F; Barth A; Bae W; Neukirchinger F; Crevenna AH; Lamb DC; Liedl T
    ACS Nano; 2017 Nov; 11(11):11264-11272. PubMed ID: 29063765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing Nonequilibrium Conformational Dynamics of Structured Nucleic Acid Assemblies.
    Sedeh RS; Pan K; Adendorff MR; Hallatschek O; Bathe KJ; Bathe M
    J Chem Theory Comput; 2016 Jan; 12(1):261-73. PubMed ID: 26636351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures.
    Kim DN; Kilchherr F; Dietz H; Bathe M
    Nucleic Acids Res; 2012 Apr; 40(7):2862-8. PubMed ID: 22156372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.
    Ensslen P; Wagenknecht HA
    Acc Chem Res; 2015 Oct; 48(10):2724-33. PubMed ID: 26411920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orange Carotenoid Protein as a Control Element in an Antenna System Based on a DNA Nanostructure.
    Andreoni A; Lin S; Liu H; Blankenship RE; Yan H; Woodbury NW
    Nano Lett; 2017 Feb; 17(2):1174-1180. PubMed ID: 28081606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical assembly of plasmonic nanostructures using virus capsid scaffolds on DNA origami templates.
    Wang D; Capehart SL; Pal S; Liu M; Zhang L; Schuck PJ; Liu Y; Yan H; Francis MB; De Yoreo JJ
    ACS Nano; 2014 Aug; 8(8):7896-904. PubMed ID: 25020109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmed coherent coupling in a synthetic DNA-based excitonic circuit.
    Boulais É; Sawaya NPD; Veneziano R; Andreoni A; Banal JL; Kondo T; Mandal S; Lin S; Schlau-Cohen GS; Woodbury NW; Yan H; Aspuru-Guzik A; Bathe M
    Nat Mater; 2018 Feb; 17(2):159-166. PubMed ID: 29180771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Long-Range, Directional Energy Transfer through DNA-Templated Dye Aggregates.
    Zhou X; Mandal S; Jiang S; Lin S; Yang J; Liu Y; Whitten DG; Woodbury NW; Yan H
    J Am Chem Soc; 2019 May; 141(21):8473-8481. PubMed ID: 31006232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cotranscriptional Folding of a Bio-orthogonal Fluorescent Scaffolded RNA Origami.
    Torelli E; Kozyra J; Shirt-Ediss B; Piantanida L; Voïtchovsky K; Krasnogor N
    ACS Synth Biol; 2020 Jul; 9(7):1682-1692. PubMed ID: 32470289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Dimensional Excitonic Networks Directed by DNA Templates as an Efficient Model Light-Harvesting and Energy Transfer System.
    Zhou X; Satyabola D; Liu H; Jiang S; Qi X; Yu L; Lin S; Liu Y; Woodbury NW; Yan H
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202211200. PubMed ID: 36288100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Voltage Sensing Using DNA Origami.
    Hemmig EA; Fitzgerald C; Maffeo C; Hecker L; Ochmann SE; Aksimentiev A; Tinnefeld P; Keyser UF
    Nano Lett; 2018 Mar; 18(3):1962-1971. PubMed ID: 29430924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids.
    Astakhova IK; Wengel J
    Acc Chem Res; 2014 Jun; 47(6):1768-77. PubMed ID: 24749544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast Excitation Transfer in Cy5 DNA Photonic Wires Displays Dye Conjugation and Excitation Energy Dependency.
    Mazuski RJ; Díaz SA; Wood RE; Lloyd LT; Klein WP; Mathur D; Melinger JS; Engel GS; Medintz IL
    J Phys Chem Lett; 2020 May; 11(10):4163-4172. PubMed ID: 32391695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent DNA nanotags based on a self-assembled DNA tetrahedron.
    Ozhalici-Unal H; Armitage BA
    ACS Nano; 2009 Feb; 3(2):425-33. PubMed ID: 19236081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-directed artificial light-harvesting antenna.
    Dutta PK; Varghese R; Nangreave J; Lin S; Yan H; Liu Y
    J Am Chem Soc; 2011 Aug; 133(31):11985-93. PubMed ID: 21714548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures.
    Fu J; Liu M; Liu Y; Yan H
    Acc Chem Res; 2012 Aug; 45(8):1215-26. PubMed ID: 22642503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and conformational dynamics of scaffolded DNA origami nanoparticles.
    Pan K; Bricker WP; Ratanalert S; Bathe M
    Nucleic Acids Res; 2017 Jun; 45(11):6284-6298. PubMed ID: 28482032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.