BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24311591)

  • 1. Evidence for small-molecule-mediated loop stabilization in the structure of the isolated Pin1 WW domain.
    Mortenson DE; Kreitler DF; Yun HG; Gellman SH; Forest KT
    Acta Crystallogr D Biol Crystallogr; 2013 Dec; 69(Pt 12):2506-12. PubMed ID: 24311591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1.
    Kowalski JA; Liu K; Kelly JW
    Biopolymers; 2002 Feb; 63(2):111-21. PubMed ID: 11786999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterisation of PinA WW domain and a comparison with other group IV WW domains, Pin1 and Ess1.
    Ng CA; Kato Y; Tanokura M; Brownlee RT
    Biochim Biophys Acta; 2008 Sep; 1784(9):1208-14. PubMed ID: 18503784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function-folding relationship in a WW domain.
    Jäger M; Zhang Y; Bieschke J; Nguyen H; Dendle M; Bowman ME; Noel JP; Gruebele M; Kelly JW
    Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10648-53. PubMed ID: 16807295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1H NMR study on the binding of Pin1 Trp-Trp domain with phosphothreonine peptides.
    Wintjens R; Wieruszeski JM; Drobecq H; Rousselot-Pailley P; Buée L; Lippens G; Landrieu I
    J Biol Chem; 2001 Jul; 276(27):25150-6. PubMed ID: 11313338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding mechanisms of individual beta-hairpins in a Go model of Pin1 WW domain by all-atom molecular dynamics simulations.
    Luo Z; Ding J; Zhou Y
    J Chem Phys; 2008 Jun; 128(22):225103. PubMed ID: 18554060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of hPin1 WW N-terminal domain boundaries on function, protein stability, and folding.
    Jäger M; Nguyen H; Dendle M; Gruebele M; Kelly JW
    Protein Sci; 2007 Jul; 16(7):1495-501. PubMed ID: 17586778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating the Affinities of Phosphopeptides for the Human Pin1 WW Domain Using 4-Substituted Proline Derivatives.
    Huang KY; Horng JC
    Biochemistry; 2015 Oct; 54(40):6186-94. PubMed ID: 26406962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling conformational ensembles of slow functional motions in Pin1-WW.
    Morcos F; Chatterjee S; McClendon CL; Brenner PR; López-Rendón R; Zintsmaster J; Ercsey-Ravasz M; Sweet CR; Jacobson MP; Peng JW; Izaguirre JA
    PLoS Comput Biol; 2010 Dec; 6(12):e1001015. PubMed ID: 21152000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of the Candida albicans Ess1 prolyl isomerase reveals a well-ordered linker that restricts domain mobility.
    Li Z; Li H; Devasahayam G; Gemmill T; Chaturvedi V; Hanes SD; Van Roey P
    Biochemistry; 2005 Apr; 44(16):6180-9. PubMed ID: 15835905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled intra- and interdomain dynamics support domain cross-talk in Pin1.
    Zhang M; Frederick TE; VanPelt J; Case DA; Peng JW
    J Biol Chem; 2020 Dec; 295(49):16585-16603. PubMed ID: 32963105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for phosphoserine-proline recognition by group IV WW domains.
    Verdecia MA; Bowman ME; Lu KP; Hunter T; Noel JP
    Nat Struct Biol; 2000 Aug; 7(8):639-43. PubMed ID: 10932246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interdomain interactions support interdomain communication in human Pin1.
    Wilson KA; Bouchard JJ; Peng JW
    Biochemistry; 2013 Oct; 52(40):6968-81. PubMed ID: 24020391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Resolution Mapping of the Folding Transition State of a WW Domain.
    Dave K; Jäger M; Nguyen H; Kelly JW; Gruebele M
    J Mol Biol; 2016 Apr; 428(8):1617-36. PubMed ID: 26880334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-linked enzyme-binding assay for Pin1 WW domain ligands.
    Mercedes-Camacho AY; Etzkorn FA
    Anal Biochem; 2010 Jul; 402(1):77-82. PubMed ID: 20230769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of PIN1 WW domain through a simple statistical mechanics model.
    Bruscolini P; Cecconi F
    Biophys Chem; 2005 Apr; 115(2-3):153-8. PubMed ID: 15752598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating the folding stability and ligand binding affinity of Pin1 WW domain by proline ring puckering.
    Tang HC; Lin YJ; Horng JC
    Proteins; 2014 Jan; 82(1):67-76. PubMed ID: 23839950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent folding pathways of Pin1 WW domain: an all-atom molecular dynamics simulation of a Gō model.
    Luo Z; Ding J; Zhou Y
    Biophys J; 2007 Sep; 93(6):2152-61. PubMed ID: 17513360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of ligand specificity in groups I and IV WW domains as studied by surface plasmon resonance and model building.
    Kato Y; Ito M; Kawai K; Nagata K; Tanokura M
    J Biol Chem; 2002 Mar; 277(12):10173-7. PubMed ID: 11751914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of naturally occurring charged mutations on the structure, stability, and binding of the Pin1 WW domain.
    Qiao X; Liu Y; Luo L; Chen L; Zhao C; Ai X
    Biochem Biophys Res Commun; 2017 May; 487(2):470-476. PubMed ID: 28431929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.