These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24311592)

  • 41. Denaturation studies reveal significant differences between GFP and blue fluorescent protein.
    Saeed IA; Ashraf SS
    Int J Biol Macromol; 2009 Oct; 45(3):236-41. PubMed ID: 19501614
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Throughput Protein-Protein Interaction Assays Using Tripartite Split-GFP Complementation.
    Pedelacq JD; Waldo GS; Cabantous S
    Methods Mol Biol; 2019; 2025():423-437. PubMed ID: 31267465
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-Throughput Isolation of Soluble Protein Domains Using a Bipartite Split-GFP Complementation System.
    Massemin A; Cabantous S; Waldo GS; Pedelacq JD
    Methods Mol Biol; 2019; 2025():321-333. PubMed ID: 31267460
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generation of a dual-functional split-reporter protein for monitoring membrane fusion using self-associating split GFP.
    Ishikawa H; Meng F; Kondo N; Iwamoto A; Matsuda Z
    Protein Eng Des Sel; 2012 Dec; 25(12):813-20. PubMed ID: 22942393
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Autofluorescent proteins.
    Dobbie IM; Lowndes NF; Sullivan KF
    Methods Cell Biol; 2008; 85():1-22. PubMed ID: 18155456
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intrasequence GFP in class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment.
    Rocheleau JV; Edidin M; Piston DW
    Biophys J; 2003 Jun; 84(6):4078-86. PubMed ID: 12770911
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Complementation and reconstitution of fluorescence from circularly permuted and truncated green fluorescent protein.
    Huang YM; Bystroff C
    Biochemistry; 2009 Feb; 48(5):929-40. PubMed ID: 19140681
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein.
    Wachter RM; Elsliger MA; Kallio K; Hanson GT; Remington SJ
    Structure; 1998 Oct; 6(10):1267-77. PubMed ID: 9782051
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Suite of Engineered GFP Molecules for Oligomeric Scaffolding.
    Leibly DJ; Arbing MA; Pashkov I; DeVore N; Waldo GS; Terwilliger TC; Yeates TO
    Structure; 2015 Sep; 23(9):1754-1768. PubMed ID: 26278175
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural dynamics of green fluorescent protein alone and fused with a single chain Fv protein.
    Hink MA; Griep RA; Borst JW; van Hoek A; Eppink MH; Schots A; Visser AJ
    J Biol Chem; 2000 Jun; 275(23):17556-60. PubMed ID: 10748019
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression, purification, crystallization and preliminary X-ray analysis of eCGP123, an extremely stable monomeric green fluorescent protein with reversible photoswitching properties.
    Don Paul C; Traore DA; Byres E; Rossjohn J; Devenish RJ; Kiss C; Bradbury A; Wilce MC; Prescott M
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Oct; 67(Pt 10):1266-8. PubMed ID: 22102044
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Use of green fluorescent protein fusions to analyse the N- and C-terminal signal peptides of GPI-anchored cell wall proteins in Candida albicans.
    Mao Y; Zhang Z; Wong B
    Mol Microbiol; 2003 Dec; 50(5):1617-28. PubMed ID: 14651643
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct visualization of the translocation of the gamma-subspecies of protein kinase C in living cells using fusion proteins with green fluorescent protein.
    Sakai N; Sasaki K; Ikegaki N; Shirai Y; Ono Y; Saito N
    J Cell Biol; 1997 Dec; 139(6):1465-76. PubMed ID: 9396752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Improved Strategy for Fluorescent Tagging of Membrane Proteins for Overexpression and Purification in Mammalian Cells.
    Rana MS; Wang X; Banerjee A
    Biochemistry; 2018 Dec; 57(49):6741-6751. PubMed ID: 30481009
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Applicability of superfolder YFP bimolecular fluorescence complementation in vitro.
    Ottmann C; Weyand M; Wolf A; Kuhlmann J; Ottmann C
    Biol Chem; 2009 Jan; 390(1):81-90. PubMed ID: 19007309
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The mechanism of folding robustness revealed by the crystal structure of extra-superfolder GFP.
    Choi JY; Jang TH; Park HH
    FEBS Lett; 2017 Jan; 591(2):442-447. PubMed ID: 27990640
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A study of protein-protein interactions in living cells using luminescence resonance energy transfer (LRET) from Renilla luciferase to Aequorea GFP.
    Wang Y; Wang G; O'Kane DJ; Szalay AA
    Mol Gen Genet; 2001 Jan; 264(5):578-87. PubMed ID: 11212912
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasmids for C-terminal tagging in Saccharomyces cerevisiae that contain improved GFP proteins, Envy and Ivy.
    Slubowski CJ; Funk AD; Roesner JM; Paulissen SM; Huang LS
    Yeast; 2015 Apr; 32(4):379-87. PubMed ID: 25612242
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Fluorescent proteins: physical-chemical properties and application in cell biology].
    Stepanenko OV; Verkhusha VV; Kuznetsova IM; Turoverov KK
    Tsitologiia; 2007; 49(5):395-420. PubMed ID: 17654827
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin.
    Miyawaki A; Llopis J; Heim R; McCaffery JM; Adams JA; Ikura M; Tsien RY
    Nature; 1997 Aug; 388(6645):882-7. PubMed ID: 9278050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.