BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 24312215)

  • 1. Thermal stress induced aggregation of aquaporin 0 (AQP0) and protection by α-crystallin via its chaperone function.
    Swamy-Mruthinti S; Srinivas V; Hansen JE; Rao ChM
    PLoS One; 2013; 8(11):e80404. PubMed ID: 24312215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinetics of thermal stress induced denaturation of Aquaporin 0.
    Hansen JE; Leslie L; Swamy-Mruthinti S
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1668-72. PubMed ID: 25044119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential temperature-dependent chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates.
    Datta SA; Rao CM
    J Biol Chem; 1999 Dec; 274(49):34773-8. PubMed ID: 10574947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparative Study of the Impact of Calcium Ion on Structure, Aggregation and Chaperone Function of Human αA-crystallin and its Cataract- Causing R12C Mutant.
    Saba S; Ghahramani M; Yousefi R
    Protein Pept Lett; 2017; 24(11):1048-1058. PubMed ID: 28782478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zebrafish alpha-crystallins: protein structure and chaperone-like activity compared to their mammalian orthologs.
    Dahlman JM; Margot KL; Ding L; Horwitz J; Posner M
    Mol Vis; 2005 Jan; 11():88-96. PubMed ID: 15692462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins.
    Carver JA; Ecroyd H; Truscott RJW; Thorn DC; Holt C
    Acc Chem Res; 2018 Mar; 51(3):745-752. PubMed ID: 29442498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the C-terminal extensions of alpha-crystallins. Swapping the C-terminal extension of alpha-crystallin to alphaB-crystallin results in enhanced chaperone activity.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    J Biol Chem; 2002 Nov; 277(48):45821-8. PubMed ID: 12235146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol-derived bile acids enhance the chaperone activity of α-crystallins.
    Song S; Liang JJ; Mulhern ML; Madson CJ; Shinohara T
    Cell Stress Chaperones; 2011 Sep; 16(5):475-80. PubMed ID: 21380614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protection of ζ-crystallin by α-crystallin under thermal stress.
    Malik A; Almaharfi HA; Khan JM; Hisamuddin M; Alamery SF; Haq SH; Ahmed MZ
    Int J Biol Macromol; 2021 Jan; 167():289-298. PubMed ID: 33278428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-induced decrease of the thermal stability and chaperone activity of alpha-crystallin.
    del Valle LJ; Escribano C; Pérez JJ; Garriga P
    Biochim Biophys Acta; 2002 Nov; 1601(1):100-9. PubMed ID: 12429508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal fluorescence microscopy study of interaction between lens MIP26/AQP0 and crystallins in living cells.
    Liu BF; Liang JJ
    J Cell Biochem; 2008 May; 104(1):51-8. PubMed ID: 18004741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of partially folded lens betaB2-crystallins with the alpha-crystallin molecular chaperone.
    Evans P; Slingsby C; Wallace BA
    Biochem J; 2008 Feb; 409(3):691-9. PubMed ID: 17937660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational and functional differences between recombinant human lens alphaA- and alphaB-crystallin.
    Sun TX; Das BK; Liang JJ
    J Biol Chem; 1997 Mar; 272(10):6220-5. PubMed ID: 9045637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Subunit Composition on the Uptake of α-Crystallin by Lens and Retina.
    Mueller NH; Fogueri U; Pedler MG; Montana K; Petrash JM; Ammar DA
    PLoS One; 2015; 10(9):e0137659. PubMed ID: 26355842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Aggregation of αB-Crystallin under Crowding Conditions Is Prevented by αA-Crystallin: Implications for α-Crystallin Stability and Lens Transparency.
    Grosas AB; Rekas A; Mata JP; Thorn DC; Carver JA
    J Mol Biol; 2020 Sep; 432(20):5593-5613. PubMed ID: 32827531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of DTT-induced aggregation of abrin by alphaA- and alphaB-crystallins: a model aggregation assay for alpha-crystallin chaperone activity in vitro.
    Reddy GB; Narayanan S; Reddy PY; Surolia I
    FEBS Lett; 2002 Jul; 522(1-3):59-64. PubMed ID: 12095619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-crystallin-mediated protection of lens cells against heat and oxidative stress-induced cell death.
    Christopher KL; Pedler MG; Shieh B; Ammar DA; Petrash JM; Mueller NH
    Biochim Biophys Acta; 2014 Feb; 1843(2):309-15. PubMed ID: 24275510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p-Benzoquinone-induced aggregation and perturbation of structure and chaperone function of α-crystallin is a causative factor of cigarette smoke-related cataractogenesis.
    Chowdhury A; Choudhury A; Chakraborty S; Ghosh A; Banerjee V; Ganguly S; Bhaduri G; Banerjee R; Das K; Chatterjee IB
    Toxicology; 2018 Feb; 394():11-18. PubMed ID: 29196190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye lens alphaA- and alphaB-crystallin: complex stability versus chaperone-like activity.
    van Boekel MA; de Lange F; de Grip WJ; de Jong WW
    Biochim Biophys Acta; 1999 Sep; 1434(1):114-23. PubMed ID: 10556565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.