These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24312677)

  • 21. Head and Eye Movements Reveal Compensatory Strategies for Acute Binaural Deficits During Sound Localization.
    Alemu RZ; Papsin BC; Harrison RV; Blakeman A; Gordon KA
    Trends Hear; 2024; 28():23312165231217910. PubMed ID: 38297817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compression of auditory space during forward self-motion.
    Teramoto W; Sakamoto S; Furune F; Gyoba J; Suzuki Y
    PLoS One; 2012; 7(6):e39402. PubMed ID: 22768076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auditory compensation for head rotation is incomplete.
    Freeman TC; Culling JF; Akeroyd MA; Brimijoin WO
    J Exp Psychol Hum Percept Perform; 2017 Feb; 43(2):371-380. PubMed ID: 27841453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reaching to sounds in virtual reality: A multisensory-motor approach to promote adaptation to altered auditory cues.
    Valzolgher C; Verdelet G; Salemme R; Lombardi L; Gaveau V; Farné A; Pavani F
    Neuropsychologia; 2020 Dec; 149():107665. PubMed ID: 33130161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of dynamic-range compression on the spatial attributes of sounds in normal-hearing listeners.
    Wiggins IM; Seeber BU
    Ear Hear; 2012; 33(3):399-410. PubMed ID: 22246139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of spatial location in auditory search.
    Eramudugolla R; McAnally KI; Martin RL; Irvine DR; Mattingley JB
    Hear Res; 2008 Apr; 238(1-2):139-46. PubMed ID: 18082346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Angle-Dependent Distortions in the Perceptual Topology of Acoustic Space.
    Brimijoin WO
    Trends Hear; 2018; 22():2331216518775568. PubMed ID: 29764312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of variation of reverberation parameters in contralateral versus ipsilateral ear signals on perceived externalization of a lateral sound source in a listening room.
    Li S; Schlieper R; Peissig J
    J Acoust Soc Am; 2018 Aug; 144(2):966. PubMed ID: 30180660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eye position determines audiovestibular integration during whole-body rotation.
    Van Barneveld DC; John Van Opstal A
    Eur J Neurosci; 2010 Mar; 31(5):920-30. PubMed ID: 20374290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source.
    Begault DR; Wenzel EM; Anderson MR
    J Audio Eng Soc; 2001 Oct; 49(10):904-16. PubMed ID: 11885605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of head movements and signal spectrum in an auditory front/back illusion.
    Brimijoin WO; Akeroyd MA
    Iperception; 2012; 3(3):179-82. PubMed ID: 23145279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic sound localization during rapid eye-head gaze shifts.
    Vliegen J; Van Grootel TJ; Van Opstal AJ
    J Neurosci; 2004 Oct; 24(42):9291-302. PubMed ID: 15496665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Type of auditory cues and apparatus influence how healthy young adults integrate sounds for dynamic balance.
    Arie L; Roginska A; Wu Y; Lin D; Olsen AF; Harel D; Lubetzky AV
    Exp Brain Res; 2024 May; 242(5):1225-1235. PubMed ID: 38526742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perception of Auditory Distance in Normal-Hearing and Moderate-to-Profound Hearing-Impaired Listeners.
    Courtois G; Grimaldi V; Lissek H; Estoppey P; Georganti E
    Trends Hear; 2019; 23():2331216519887615. PubMed ID: 31774032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Persistent perceptual delay for head movement onset relative to auditory stimuli of different durations and rise times.
    Barnett-Cowan M; Raeder SM; Bülthoff HH
    Exp Brain Res; 2012 Jul; 220(1):41-50. PubMed ID: 22580574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural correlates of sound externalization.
    Callan A; Callan DE; Ando H
    Neuroimage; 2013 Feb; 66():22-7. PubMed ID: 23108271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The precision of signals encoding active self-movement.
    Haynes JD; Gallagher M; Culling JF; Freeman TCA
    J Neurophysiol; 2024 Aug; 132(2):389-402. PubMed ID: 38863427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulus factors which influence the perceived externalization of sound presented through headphones.
    Levy ET; Butler RA
    J Aud Res; 1978 Jan; 18(1):41-50. PubMed ID: 738986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Benefits of active listening during 3D sound localization.
    Gaveau V; Coudert A; Salemme R; Koun E; Desoche C; Truy E; Farnè A; Pavani F
    Exp Brain Res; 2022 Nov; 240(11):2817-2833. PubMed ID: 36071210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sound localization with bilateral cochlear implants in noise: how much do head movements contribute to localization?
    Mueller MF; Meisenbacher K; Lai WK; Dillier N
    Cochlear Implants Int; 2014 Jan; 15(1):36-42. PubMed ID: 23684420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.