These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24312791)

  • 1. Lactose engineering for better performance in dry powder inhalers.
    Rahimpour Y; Hamishehkar H
    Adv Pharm Bull; 2012; 2(2):183-7. PubMed ID: 24312791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focusing on powder processing in dry powder inhalation product development, manufacturing and performance.
    Stegemann S; Faulhammer E; Pinto JT; Paudel A
    Int J Pharm; 2022 Feb; 614():121445. PubMed ID: 34998921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.
    Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD
    J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dry powders for oral inhalation free of lactose carrier particles.
    Healy AM; Amaro MI; Paluch KJ; Tajber L
    Adv Drug Deliv Rev; 2014 Aug; 75():32-52. PubMed ID: 24735676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced design and development of nanoparticle/microparticle dual-drug combination lactose carrier-free dry powder inhalation aerosols.
    Muralidharan P; Mallory EK; Malapit M; Phan H; Ledford JG; Hayes D; Mansour HM
    RSC Adv; 2020 Nov; 10(68):41846-41856. PubMed ID: 33391731
    [No Abstract]   [Full Text] [Related]  

  • 6. Influence of physical properties of carrier on the performance of dry powder inhalers.
    Peng T; Lin S; Niu B; Wang X; Huang Y; Zhang X; Li G; Pan X; Wu C
    Acta Pharm Sin B; 2016 Jul; 6(4):308-18. PubMed ID: 27471671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle engineered mannitol for carrier-based inhalation - A serious alternative?
    Hertel N; Birk G; Scherließ R
    Int J Pharm; 2020 Mar; 577():118901. PubMed ID: 31846726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dosing challenges in respiratory therapies.
    Yeung S; Traini D; Lewis D; Young PM
    Int J Pharm; 2018 Sep; 548(1):659-671. PubMed ID: 30033395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dry-Powder Inhaler Formulation of Rifampicin: An Improved Targeted Delivery System for Alveolar Tuberculosis.
    Rawal T; Kremer L; Halloum I; Butani S
    J Aerosol Med Pulm Drug Deliv; 2017 Dec; 30(6):388-398. PubMed ID: 28510480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Dry Powder Inhaler Performance by Surface Roughening of Lactose Carrier Particles.
    Tan BM; Chan LW; Heng PW
    Pharm Res; 2016 Aug; 33(8):1923-35. PubMed ID: 27091033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dry powder inhaler device influence on carrier particle performance.
    Donovan MJ; Kim SH; Raman V; Smyth HD
    J Pharm Sci; 2012 Mar; 101(3):1097-107. PubMed ID: 22095397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Dry Powder Inhaler Carrier Targeted Design: A Comparative Case Study of Diverse Anomeric Compositions and Physical Properties of Lactose.
    Pinto JT; Zellnitz S; Guidi T; Roblegg E; Paudel A
    Mol Pharm; 2018 Jul; 15(7):2827-2839. PubMed ID: 29856921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dry powder inhaler performance of spray dried mannitol with tailored surface morphologies as carrier and salbutamol sulphate.
    Mönckedieck M; Kamplade J; Fakner P; Urbanetz NA; Walzel P; Steckel H; Scherließ R
    Int J Pharm; 2017 May; 524(1-2):351-363. PubMed ID: 28347847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations.
    Kinnunen H; Hebbink G; Peters H; Shur J; Price R
    AAPS PharmSciTech; 2014 Aug; 15(4):898-909. PubMed ID: 24756910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers.
    Tan BMJ; Chan LW; Heng PWS
    Mol Pharm; 2018 Apr; 15(4):1635-1642. PubMed ID: 29490144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered mannitol ternary additives improve dispersion of lactose-salbutamol sulphate dry powder inhalations.
    Kaialy W; Nokhodchi A
    AAPS J; 2013 Jul; 15(3):728-43. PubMed ID: 23591748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of slab-shaped lactose carrier particles for dry powder inhalers by air jet milling.
    Kou X; Chan LW; Sun CC; Heng PWS
    Asian J Pharm Sci; 2017 Jan; 12(1):59-65. PubMed ID: 32104314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-lactose binding aspects in adhesive mixtures: controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces.
    Zhou QT; Morton DA
    Adv Drug Deliv Rev; 2012 Mar; 64(3):275-84. PubMed ID: 21782866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations of high dose carrier based formulations.
    Yeung S; Traini D; Tweedie A; Lewis D; Church T; Young PM
    Int J Pharm; 2018 Jun; 544(1):141-152. PubMed ID: 29649519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal engineering of lactose using electrospray technology: carrier for pulmonary drug delivery.
    Patil S; Mahadik A; Nalawade P; More P
    Drug Dev Ind Pharm; 2017 Dec; 43(12):2085-2091. PubMed ID: 28831840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.