These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 24313311)
21. In Situ Growth of the Ni Liu X; Wang J; Yang G ACS Appl Mater Interfaces; 2018 Jun; 10(24):20688-20695. PubMed ID: 29807419 [TBL] [Abstract][Full Text] [Related]
22. Electrochemical Investigation of PANI:PPy/AC and PANI:PEDOT/AC Composites as Electrode Materials in Supercapacitors. Khan S; Alkhedher M; Raza R; Ahmad MA; Majid A; Din EMTE Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631859 [TBL] [Abstract][Full Text] [Related]
24. Investigation of a Branchlike MoO(3)/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. Zhang X; Zeng X; Yang M; Qi Y ACS Appl Mater Interfaces; 2014 Jan; 6(2):1125-30. PubMed ID: 24367933 [TBL] [Abstract][Full Text] [Related]
25. Interfacial Engineered Polyaniline/Sulfur-Doped TiO Li C; Wang Z; Li S; Cheng J; Zhang Y; Zhou J; Yang D; Tong DG; Wang B ACS Appl Mater Interfaces; 2018 May; 10(21):18390-18399. PubMed ID: 29727153 [TBL] [Abstract][Full Text] [Related]
26. Platelet CMK-5 as an excellent mesoporous carbon to enhance the pseudocapacitance of polyaniline. Lei Z; Sun X; Wang H; Liu Z; Zhao XS ACS Appl Mater Interfaces; 2013 Aug; 5(15):7501-8. PubMed ID: 23848251 [TBL] [Abstract][Full Text] [Related]
27. α-Fe2O3@PANI Core-Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. Lu XF; Chen XY; Zhou W; Tong YX; Li GR ACS Appl Mater Interfaces; 2015 Jul; 7(27):14843-50. PubMed ID: 26090902 [TBL] [Abstract][Full Text] [Related]
28. Core-double-shell, carbon nanotube@polypyrrole@MnO₂ sponge as freestanding, compressible supercapacitor electrode. Li P; Yang Y; Shi E; Shen Q; Shang Y; Wu S; Wei J; Wang K; Zhu H; Yuan Q; Cao A; Wu D ACS Appl Mater Interfaces; 2014 Apr; 6(7):5228-34. PubMed ID: 24621200 [TBL] [Abstract][Full Text] [Related]
29. Investigations on silver/polyaniline electrodes for electrochemical supercapacitors. Patil DS; Shaikh JS; Pawar SA; Devan RS; Ma YR; Moholkar AV; Kim JH; Kalubarme RS; Park CJ; Patil PS Phys Chem Chem Phys; 2012 Sep; 14(34):11886-95. PubMed ID: 22850931 [TBL] [Abstract][Full Text] [Related]
30. Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor. Yu P; Li Y; Zhao X; Wu L; Zhang Q Langmuir; 2014 May; 30(18):5306-13. PubMed ID: 24761945 [TBL] [Abstract][Full Text] [Related]
31. Highly Efficient Quasi-Solid-State Asymmetric Supercapacitors Based on MoS Cheng B; Cheng R; Tan F; Liu X; Huo J; Yue G Nanoscale Res Lett; 2019 Feb; 14(1):66. PubMed ID: 30806819 [TBL] [Abstract][Full Text] [Related]
32. Visible-light photocatalytic degradation performances and thermal stability due to the synergetic effect of TiO2 with conductive copolymers of polyaniline and polypyrrole. Deng F; Min L; Luo X; Wu S; Luo S Nanoscale; 2013 Sep; 5(18):8703-10. PubMed ID: 23900296 [TBL] [Abstract][Full Text] [Related]
33. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites. Wang Y; Tang S; Vongehr S; Syed JA; Wang X; Meng X Sci Rep; 2016 Feb; 6():12883. PubMed ID: 26883179 [TBL] [Abstract][Full Text] [Related]
34. Supercapacitive Properties of 3D-Arrayed Polyaniline Hollow Nanospheres Encaging RuO Kwon H; Hong D; Ryu I; Yim S ACS Appl Mater Interfaces; 2017 Mar; 9(8):7412-7423. PubMed ID: 28169526 [TBL] [Abstract][Full Text] [Related]
35. Influence of carbon shell structure on electrochemical performance of multi-walled carbon nanotube electrodes. Kim KS; Park SJ Anal Chim Acta; 2013 Jul; 788():17-23. PubMed ID: 23845476 [TBL] [Abstract][Full Text] [Related]
36. Microwave-assisted chemical-vapor-induced in situ polymerization of polyaniline nanofibers on graphite electrode for high-performance supercapacitor. Li X; Yang L; Lei Y; Gu L; Xiao D ACS Appl Mater Interfaces; 2014 Nov; 6(22):19978-89. PubMed ID: 25361469 [TBL] [Abstract][Full Text] [Related]
37. Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors. Huang F; Lou F; Chen D ChemSusChem; 2012 May; 5(5):888-95. PubMed ID: 22411903 [TBL] [Abstract][Full Text] [Related]
38. Ordered Polypyrrole Nanowire Arrays Grown on a Carbon Cloth Substrate for a High-Performance Pseudocapacitor Electrode. Huang ZH; Song Y; Xu XX; Liu XX ACS Appl Mater Interfaces; 2015 Nov; 7(45):25506-13. PubMed ID: 26509281 [TBL] [Abstract][Full Text] [Related]
39. Nanoclay-based hierarchical interconnected mesoporous CNT/PPy electrode with improved specific capacitance for high performance supercapacitors. Oraon R; De Adhikari A; Tiwari SK; Nayak GC Dalton Trans; 2016 May; 45(22):9113-26. PubMed ID: 27163261 [TBL] [Abstract][Full Text] [Related]
40. A three-dimensional graphene aerogel containing solvent-free polyaniline fluid for high performance supercapacitors. Gao Z; Yang J; Huang J; Xiong C; Yang Q Nanoscale; 2017 Nov; 9(45):17710-17716. PubMed ID: 29130462 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]