These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24313364)

  • 1. Investigation of differences between nanosecond electropulse and electrohydraulic methods of lithotripsy: a comparative in vitro study of efficacy.
    Martov A; Gudkov A; Diamant V; Chepovetsky G; Lerner M
    J Endourol; 2014 Apr; 28(4):437-45. PubMed ID: 24313364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative in vitro study of the effectiveness of nanosecond electrical pulse and laser lithotripters.
    Martov A; Diamant V; Borisik A; Andronov A; Chernenko V
    J Endourol; 2013 Oct; 27(10):1287-96. PubMed ID: 23905871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrograde endoscopic lithotripsy using the innovative nanosecond electropulse method.
    Gudkov A; Boshchenko V; Petlin A; Afonin V; Diamant V; Lerner M
    Springerplus; 2013; 2():538. PubMed ID: 24171154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparative evaluation of efficacy of electropulse and laser lithotriptors in vitro].
    Martov AG; Diamant VM; Borisik AV; Andronov AS; Dzhalilov DA
    Urologiia; 2013; (2):70-2, 74-8. PubMed ID: 23789368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy.
    Zhong P; Tong HL; Cocks FH; Preminger GM
    J Endourol; 1997 Feb; 11(1):55-61. PubMed ID: 9048300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A clinical comparison of an electrohydraulic and a piezoelectric shockwave lithotripter in gallstone therapy.
    Benninger J; Schneider HT; Hahn EG; Ell C
    Am J Gastroenterol; 1993 Jan; 88(1):58-63. PubMed ID: 8420275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro fragmentation of gallstones: comparison of electrohydraulic, electromagnetic and piezoelectric shockwave lithotripters.
    Schneider HT; Fromm M; Ott R; Janowitz P; Swobodnik W; Neuhaus H; Ell C
    Hepatology; 1991 Aug; 14(2):301-5. PubMed ID: 1860686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoelectric shockwave lithotripters: differences in fragmentation efficiency in vitro.
    Schneider HT; Weisshaar E; Anderegg A; Delmont JP; Benattar JM; Coendoz S; Ell C
    Scand J Gastroenterol; 1993 May; 28(5):460-4. PubMed ID: 8511508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory and clinical assessment of pneumatically driven intracorporeal lithotripsy.
    Teh CL; Zhong P; Preminger GM
    J Endourol; 1998 Apr; 12(2):163-9. PubMed ID: 9607444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gallstone fragmentation with contact electrohydraulic lithotripsy: in vitro study of physical and technical factors.
    Tung GA; Mueller PR; Brink JA; Saini S; Ferrucci JT
    Radiology; 1990 Mar; 174(3 Pt 1):781-5. PubMed ID: 2305062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of stone damage caused by different modes of shock wave generation.
    Chuong CJ; Zhong P; Preminger GM
    J Urol; 1992 Jul; 148(1):200-5. PubMed ID: 1613869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Broad vs Narrow Focal Width Lithotripter Fields.
    Xing Y; Chen TT; Simmons WN; Sankin G; Cocks FH; Lipkin ME; Preminger GM; Zhong P
    J Endourol; 2017 May; 31(5):502-509. PubMed ID: 28340536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of shielded or unshielded laser and electrohydraulic lithotripsy on rabbit bladder.
    Bhatta KM; Rosen DI; Flotte TJ; Dretler SP; Nishioka NS
    J Urol; 1990 Apr; 143(4):857-60. PubMed ID: 2313823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation.
    Zwaschka TA; Ahn JS; Cunitz BW; Bailey MR; Dunmire B; Sorensen MD; Harper JD; Maxwell AD
    J Endourol; 2018 Apr; 32(4):344-349. PubMed ID: 29433329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro comparisons of retropulsion and fragmentation efficacy of 2 cordless, handheld pneumatic and electromechanical lithotripsy devices.
    Khoder WY; Bader MJ; Haseke N; Stief CG; Baumgartl M; Pongratz T; Sroka R
    Urology; 2014 Apr; 83(4):726-31. PubMed ID: 24485360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrohydraulic lithotripsy in 111 patients: a safe and effective therapy for difficult bile duct stones.
    Arya N; Nelles SE; Haber GB; Kim YI; Kortan PK
    Am J Gastroenterol; 2004 Dec; 99(12):2330-4. PubMed ID: 15571578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency and efficacy of different intracorporeal ultrasonic lithotripsy units on a synthetic stone model.
    Liatsikos EN; Dinlenc CZ; Fogarty JD; Kapoor R; Bernardo NO; Smith AD
    J Endourol; 2001 Nov; 15(9):925-8. PubMed ID: 11769848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of bacteria inoculated inside urinary stone-phantoms using intracorporeal lithotripters.
    Gutiérrez J; Alvarez UM; Mues E; Fernández F; Gómez G; Loske AM
    Urol Res; 2008 Feb; 36(1):67-72. PubMed ID: 18189130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracorporeal shock wave lithotripsy of gall stones: an in vitro comparison between an electrohydraulic and a piezoceramic device.
    Schachler R; Bird NC; Sauerbruch T; Frost EA; Sackmann M; Paumgartner G; Johnson AG
    Gut; 1991 Mar; 32(3):312-5. PubMed ID: 2013428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.