These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 24313438)
1. External validation of structure-biodegradation relationship (SBR) models for predicting the biodegradability of xenobiotics. Devillers J; Pandard P; Richard B SAR QSAR Environ Res; 2013; 24(12):979-93. PubMed ID: 24313438 [TBL] [Abstract][Full Text] [Related]
2. External validation of EPIWIN biodegradation models. Posthumus R; Traas TP; Peijnenburg WJ; Hulzebos EM SAR QSAR Environ Res; 2005; 16(1-2):135-48. PubMed ID: 15844447 [TBL] [Abstract][Full Text] [Related]
5. External validation of the biodegradability prediction model CATABOL using data sets of existing and new chemicals under the Japanese Chemical Substances Control Law. Sakuratani Y; Yamada J; Kasai K; Noguchi Y; Nishihara T SAR QSAR Environ Res; 2005 Oct; 16(5):403-31. PubMed ID: 16272041 [TBL] [Abstract][Full Text] [Related]
6. A review of structure-based biodegradation estimation methods. Raymond JW; Rogers TN; Shonnard DR; Kline AA J Hazard Mater; 2001 Jun; 84(2-3):189-215. PubMed ID: 11406306 [TBL] [Abstract][Full Text] [Related]
7. Probabilistic assessment of biodegradability based on metabolic pathways: catabol system. Jaworska J; Dimitrov S; Nikolova N; Mekenyan O SAR QSAR Environ Res; 2002 Mar; 13(2):307-23. PubMed ID: 12071658 [TBL] [Abstract][Full Text] [Related]
8. In silico models for predicting ready biodegradability under REACH: a comparative study. Pizzo F; Lombardo A; Manganaro A; Benfenati E Sci Total Environ; 2013 Oct; 463-464():161-8. PubMed ID: 23796884 [TBL] [Abstract][Full Text] [Related]
9. Development of a predictive model for biodegradability based on BIODEG, the evaluated biodegradation data base. Howard PH; Boethling RS; Stiteler W; Meylan W; Beauman J Sci Total Environ; 1991 Dec; 109-110():635-41. PubMed ID: 1815378 [TBL] [Abstract][Full Text] [Related]
10. Data analysis and alternative modelling of MITI-I aerobic biodegradation. Sedykh A; Klopman G SAR QSAR Environ Res; 2007; 18(7-8):693-709. PubMed ID: 18038368 [TBL] [Abstract][Full Text] [Related]
11. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223 [TBL] [Abstract][Full Text] [Related]
12. A new in silico classification model for ready biodegradability, based on molecular fragments. Lombardo A; Pizzo F; Benfenati E; Manganaro A; Ferrari T; Gini G Chemosphere; 2014 Aug; 108():10-6. PubMed ID: 24875906 [TBL] [Abstract][Full Text] [Related]
13. Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression. Chen G; Li X; Chen J; Zhang YN; Peijnenburg WJ Environ Toxicol Chem; 2014 Dec; 33(12):2688-93. PubMed ID: 25208514 [TBL] [Abstract][Full Text] [Related]
14. Comparison of ready biodegradation estimation methods for fragrance materials. Boethling R Sci Total Environ; 2014 Nov; 497-498():60-67. PubMed ID: 25119791 [TBL] [Abstract][Full Text] [Related]
15. A quantitative structure-biodegradation relationship (QSBR) approach to predict biodegradation rates of aromatic chemicals. Acharya K; Werner D; Dolfing J; Barycki M; Meynet P; Mrozik W; Komolafe O; Puzyn T; Davenport RJ Water Res; 2019 Jun; 157():181-190. PubMed ID: 30953853 [TBL] [Abstract][Full Text] [Related]